Small generators of abelian number fields

IF 1 3区 数学 Q1 MATHEMATICS
Martin Widmer
{"title":"Small generators of abelian number fields","authors":"Martin Widmer","doi":"10.1515/forum-2023-0467","DOIUrl":null,"url":null,"abstract":"We show that for each abelian number field <jats:italic>K</jats:italic> of sufficiently large degree <jats:italic>d</jats:italic> there exists an element <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi>K</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0135.png\" /> <jats:tex-math>{\\alpha\\in K}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>K</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>ℚ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0100.png\" /> <jats:tex-math>{K=\\mathbb{Q}(\\alpha)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and absolute Weil height <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>H</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:msub> <m:mo>≪</m:mo> <m:mi>d</m:mi> </m:msub> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>K</m:mi> </m:msub> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>d</m:mi> </m:mrow> </m:mfrac> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0091.png\" /> <jats:tex-math>{H(\\alpha)\\ll_{d}|\\Delta_{K}|^{\\frac{1}{2d}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>K</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0128.png\" /> <jats:tex-math>{\\Delta_{K}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the discriminant of <jats:italic>K</jats:italic>. This answers a question of Ruppert from 1998 in the case of abelian extensions of sufficiently large degree. We also show that the exponent <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfrac> <m:mn>1</m:mn> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>d</m:mi> </m:mrow> </m:mfrac> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0152.png\" /> <jats:tex-math>{\\frac{1}{2d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is best-possible when <jats:italic>d</jats:italic> is even.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"104 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0467","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that for each abelian number field K of sufficiently large degree d there exists an element α K {\alpha\in K} with K = ( α ) {K=\mathbb{Q}(\alpha)} and absolute Weil height H ( α ) d | Δ K | 1 2 d {H(\alpha)\ll_{d}|\Delta_{K}|^{\frac{1}{2d}}} , where Δ K {\Delta_{K}} denotes the discriminant of K. This answers a question of Ruppert from 1998 in the case of abelian extensions of sufficiently large degree. We also show that the exponent 1 2 d {\frac{1}{2d}} is best-possible when d is even.
无边数域的小发电机
我们证明,对于每个阶数为 d 的无性数域 K,都存在一个元素 α∈K {alpha\in K} ,其中 K = ℚ ( α ) {K=\mathbb{Q}(\alpha)} 且绝对韦尔高 H ( α ) ≪ d | Δ K | 1 2 d {H(\alpha)\ll_{d}|\Delta_{K}|^{\frac{1}{2d}} ,其中 Δ K {Delta_{K}} 表示 K 的判别式。 其中 Δ K {Delta_{K}} 表示 K 的判别式。这回答了鲁珀特在 1998 年提出的一个问题,即在阶数足够大的无性扩展的情况下。我们还证明了当 d 为偶数时,指数 1 2 d {\frac{1}{2d}} 是最可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信