Euler’s integral, multiple cosine function and zeta values
IF 1
3区 数学
Q1 MATHEMATICS
Su Hu, Min-Soo Kim
求助PDF
{"title":"Euler’s integral, multiple cosine function and zeta values","authors":"Su Hu, Min-Soo Kim","doi":"10.1515/forum-2023-0426","DOIUrl":null,"url":null,"abstract":"In 1769, Euler proved the following result: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:mn>0</m:mn> <m:mfrac> <m:mi>π</m:mi> <m:mn>2</m:mn> </m:mfrac> </m:msubsup> <m:mrow> <m:mrow> <m:mi>log</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>sin</m:mi> <m:mo></m:mo> <m:mi>θ</m:mi> </m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>θ</m:mi> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mfrac> <m:mi>π</m:mi> <m:mn>2</m:mn> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo></m:mo> <m:mn>2</m:mn> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0177.png\" /> <jats:tex-math>\\int_{0}^{\\frac{\\pi}{2}}\\log(\\sin\\theta)\\,d\\theta=-\\frac{\\pi}{2}\\log 2.</jats:tex-math> </jats:alternatives> </jats:disp-formula> In this paper, as a generalization, we evaluate the definite integrals <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:mn>0</m:mn> <m:mi>x</m:mi> </m:msubsup> <m:mrow> <m:msup> <m:mi>θ</m:mi> <m:mrow> <m:mi>r</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo></m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mrow> <m:mi>cos</m:mi> <m:mo></m:mo> <m:mfrac> <m:mi>θ</m:mi> <m:mn>2</m:mn> </m:mfrac> </m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\" rspace=\"4.2pt\">)</m:mo> </m:mrow> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>θ</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0201.png\" /> <jats:tex-math>\\int_{0}^{x}\\theta^{r-2}\\log\\biggl{(}\\cos\\frac{\\theta}{2}\\biggr{)}\\,d\\theta</jats:tex-math> </jats:alternatives> </jats:disp-formula> for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> <m:mo>,</m:mo> <m:mn>4</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0363.png\" /> <jats:tex-math>r=2,3,4,\\dots</jats:tex-math> </jats:alternatives> </jats:inline-formula> . We show that it can be expressed by the special values of Kurokawa and Koyama’s multiple cosine functions <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mi>r</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0422.png\" /> <jats:tex-math>{\\mathcal{C}_{r}(x)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or by the special values of alternating zeta and Dirichlet lambda functions. In particular, we get the following explicit expression of the zeta value: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>ζ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mn>4</m:mn> <m:mo></m:mo> <m:msup> <m:mi>π</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mn>21</m:mn> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">(</m:mo> <m:mfrac> <m:mrow> <m:msup> <m:mi>e</m:mi> <m:mfrac> <m:mrow> <m:mn>4</m:mn> <m:mo></m:mo> <m:mi>G</m:mi> </m:mrow> <m:mi>π</m:mi> </m:mfrac> </m:msup> <m:mo></m:mo> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">(</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>4</m:mn> </m:mfrac> <m:mo maxsize=\"120%\" minsize=\"120%\">)</m:mo> </m:mrow> <m:mn>16</m:mn> </m:msup> </m:mrow> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> </m:mfrac> <m:mo maxsize=\"260%\" minsize=\"260%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0335.png\" /> <jats:tex-math>\\zeta(3)=\\frac{4\\pi^{2}}{21}\\log\\Biggl{(}\\frac{e^{\\frac{4G}{\\pi}}\\mathcal{C}_{% 3}\\bigl{(}\\frac{1}{4}\\bigr{)}^{16}}{\\sqrt{2}}\\Biggr{)},</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:italic>G</jats:italic> is Catalan’s constant and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>4</m:mn> </m:mfrac> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0418.png\" /> <jats:tex-math>{\\mathcal{C}_{3}(\\frac{1}{4})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the special value of Kurokawa and Koyama’s multiple cosine function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0420.png\" /> <jats:tex-math>{\\mathcal{C}_{3}(x)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfrac> <m:mn>1</m:mn> <m:mn>4</m:mn> </m:mfrac> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0393.png\" /> <jats:tex-math>{\\frac{1}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, we prove several series representations for the logarithm of multiple cosine functions <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>log</m:mi> <m:mo></m:mo> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mi>r</m:mi> </m:msub> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mfrac> <m:mi>x</m:mi> <m:mn>2</m:mn> </m:mfrac> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0407.png\" /> <jats:tex-math>{\\log\\mathcal{C}_{r}(\\frac{x}{2})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> by zeta functions, <jats:italic>L</jats:italic>-functions or polylogarithms. One of them leads to another expression of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ζ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0439.png\" /> <jats:tex-math>{\\zeta(3)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>ζ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mn>72</m:mn> <m:mo></m:mo> <m:msup> <m:mi>π</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mn>11</m:mn> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">(</m:mo> <m:mfrac> <m:mrow> <m:msup> <m:mn>3</m:mn> <m:mfrac> <m:mn>1</m:mn> <m:mn>72</m:mn> </m:mfrac> </m:msup> <m:mo></m:mo> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">(</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>6</m:mn> </m:mfrac> <m:mo maxsize=\"120%\" minsize=\"120%\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">(</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>6</m:mn> </m:mfrac> <m:mo maxsize=\"120%\" minsize=\"120%\">)</m:mo> </m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mn>3</m:mn> </m:mfrac> </m:msup> </m:mrow> </m:mfrac> <m:mo maxsize=\"260%\" minsize=\"260%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0337.png\" /> <jats:tex-math>\\zeta(3)=\\frac{72\\pi^{2}}{11}\\log\\Biggl{(}\\frac{3^{\\frac{1}{72}}\\mathcal{C}_{3% }\\bigl{(}\\frac{1}{6}\\bigr{)}}{\\mathcal{C}_{2}\\bigl{(}\\frac{1}{6}\\bigr{)}^{% \\frac{1}{3}}}\\Biggr{)}.</jats:tex-math> </jats:alternatives> </jats:disp-formula>","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0426","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In 1769, Euler proved the following result: ∫ 0 π 2 log ( sin θ ) 𝑑 θ = - π 2 log 2 . \int_{0}^{\frac{\pi}{2}}\log(\sin\theta)\,d\theta=-\frac{\pi}{2}\log 2. In this paper, as a generalization, we evaluate the definite integrals ∫ 0 x θ r - 2 log ( cos θ 2 ) 𝑑 θ \int_{0}^{x}\theta^{r-2}\log\biggl{(}\cos\frac{\theta}{2}\biggr{)}\,d\theta for r = 2 , 3 , 4 , … r=2,3,4,\dots . We show that it can be expressed by the special values of Kurokawa and Koyama’s multiple cosine functions 𝒞 r ( x ) {\mathcal{C}_{r}(x)} or by the special values of alternating zeta and Dirichlet lambda functions. In particular, we get the following explicit expression of the zeta value: ζ ( 3 ) = 4 π 2 21 log ( e 4 G π 𝒞 3 ( 1 4 ) 16 2 ) , \zeta(3)=\frac{4\pi^{2}}{21}\log\Biggl{(}\frac{e^{\frac{4G}{\pi}}\mathcal{C}_{% 3}\bigl{(}\frac{1}{4}\bigr{)}^{16}}{\sqrt{2}}\Biggr{)}, where G is Catalan’s constant and 𝒞 3 ( 1 4 ) {\mathcal{C}_{3}(\frac{1}{4})} is the special value of Kurokawa and Koyama’s multiple cosine function 𝒞 3 ( x ) {\mathcal{C}_{3}(x)} at 1 4 {\frac{1}{4}} . Furthermore, we prove several series representations for the logarithm of multiple cosine functions log 𝒞 r ( x 2 ) {\log\mathcal{C}_{r}(\frac{x}{2})} by zeta functions, L -functions or polylogarithms. One of them leads to another expression of ζ ( 3 ) {\zeta(3)} : ζ ( 3 ) = 72 π 2 11 log ( 3 1 72 𝒞 3 ( 1 6 ) 𝒞 2 ( 1 6 ) 1 3 ) . \zeta(3)=\frac{72\pi^{2}}{11}\log\Biggl{(}\frac{3^{\frac{1}{72}}\mathcal{C}_{3% }\bigl{(}\frac{1}{6}\bigr{)}}{\mathcal{C}_{2}\bigl{(}\frac{1}{6}\bigr{)}^{% \frac{1}{3}}}\Biggr{)}.
欧拉积分、多重余弦函数和 zeta 值
1769 年,欧拉证明了以下结果:∫ 0 π 2 log ( sin θ ) 𝑑 θ = - π 2 log 2 。 \int_{0}^{\frac{\pi}{2}}\log(\sin\theta)\,d\theta=-\frac{\pi}{2}\log 2. 在本文中,作为一种概括,我们评估了 ∫ 0 x θ r - 2 log ( cos θ 2 ) 𝑑 θ \int_{0}^{x}\theta^{r-2}\log\biggl{(}\cos\frac\{theta}{2}\biggr{)}\,d\theta 对于 r = 2 , 3 , 4 , ... r=2,3,4,\dots 的定积分。我们证明它可以用黑川和小山的多重余弦函数 𝒞 r ( x ) {\mathcal{C}_{r}(x)} 的特殊值或交替zeta 和 Dirichlet lambda 函数的特殊值来表示。特别是,我们可以得到以下zeta 值的明确表达式: ζ ( 3 ) = 4 π 2 21 log ( e 4 G π 𝒞 3 ( 1 4 ) 16 2 ) , \zeta(3)=\frac{4\pi^{2}}{21}\log\Biggl{(}\frac{e^{\frac{4G}{\pi}}\mathcal{C}_{% 3}\bigl{(}\frac{1}{4}\bigr{)}^{16}}{\sqrt{2}}\Biggr{)}, 其中 G 是卡塔兰常数,𝒞 3 ( 1 4 ) {\mathcal{C}_{3}(\frac{1}{4})} 是 Kurokawa 和 Koyama 的多重余弦函数𝒞 3 ( x ) {\mathcal{C}_{3}(x)} 在 1 4 {\frac{1}{4}} 的特殊值。 .此外,我们还证明了多个余弦函数 log 𝒞 r ( x 2 ) {\logmathcal{C}_{r}(\frac{x}{2})} 的对数用 zeta 函数、L 函数或多对数表示的几个数列。其中一个函数引出了 ζ ( 3 ) {\zeta(3)} 的另一个表达式: ζ ( 3 ) = 72 π 2 11 log ( 3 1 72 𝒞 3 ( 1 6 ) 𝒞 2 ( 1 6 ) 1 3 ) 。 \zeta(3)=\frac{72\pi^{2}}{11}\log\Biggl{(}\frac{3^{\frac{1}{72}}\mathcal{C}_{3% }\bigl{(}\frac{1}{6}\bigr{)}}{\mathcal{C}_{2}\bigl{(}\frac{1}{6}\bigr{)}^{% \frac{1}{3}}}\Biggr{)}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。