Euler’s integral, multiple cosine function and zeta values

IF 1 3区 数学 Q1 MATHEMATICS
Su Hu, Min-Soo Kim
{"title":"Euler’s integral, multiple cosine function and zeta values","authors":"Su Hu, Min-Soo Kim","doi":"10.1515/forum-2023-0426","DOIUrl":null,"url":null,"abstract":"In 1769, Euler proved the following result: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:mn>0</m:mn> <m:mfrac> <m:mi>π</m:mi> <m:mn>2</m:mn> </m:mfrac> </m:msubsup> <m:mrow> <m:mrow> <m:mi>log</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>sin</m:mi> <m:mo>⁡</m:mo> <m:mi>θ</m:mi> </m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>θ</m:mi> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mfrac> <m:mi>π</m:mi> <m:mn>2</m:mn> </m:mfrac> <m:mo>⁢</m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo>⁡</m:mo> <m:mn>2</m:mn> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0177.png\" /> <jats:tex-math>\\int_{0}^{\\frac{\\pi}{2}}\\log(\\sin\\theta)\\,d\\theta=-\\frac{\\pi}{2}\\log 2.</jats:tex-math> </jats:alternatives> </jats:disp-formula> In this paper, as a generalization, we evaluate the definite integrals <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:mn>0</m:mn> <m:mi>x</m:mi> </m:msubsup> <m:mrow> <m:msup> <m:mi>θ</m:mi> <m:mrow> <m:mi>r</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mrow> <m:mi>cos</m:mi> <m:mo>⁡</m:mo> <m:mfrac> <m:mi>θ</m:mi> <m:mn>2</m:mn> </m:mfrac> </m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\" rspace=\"4.2pt\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>θ</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0201.png\" /> <jats:tex-math>\\int_{0}^{x}\\theta^{r-2}\\log\\biggl{(}\\cos\\frac{\\theta}{2}\\biggr{)}\\,d\\theta</jats:tex-math> </jats:alternatives> </jats:disp-formula> for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> <m:mo>,</m:mo> <m:mn>4</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0363.png\" /> <jats:tex-math>r=2,3,4,\\dots</jats:tex-math> </jats:alternatives> </jats:inline-formula> . We show that it can be expressed by the special values of Kurokawa and Koyama’s multiple cosine functions <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mi>r</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0422.png\" /> <jats:tex-math>{\\mathcal{C}_{r}(x)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or by the special values of alternating zeta and Dirichlet lambda functions. In particular, we get the following explicit expression of the zeta value: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>ζ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mn>4</m:mn> <m:mo>⁢</m:mo> <m:msup> <m:mi>π</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mn>21</m:mn> </m:mfrac> <m:mo>⁢</m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">(</m:mo> <m:mfrac> <m:mrow> <m:msup> <m:mi>e</m:mi> <m:mfrac> <m:mrow> <m:mn>4</m:mn> <m:mo>⁢</m:mo> <m:mi>G</m:mi> </m:mrow> <m:mi>π</m:mi> </m:mfrac> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">(</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>4</m:mn> </m:mfrac> <m:mo maxsize=\"120%\" minsize=\"120%\">)</m:mo> </m:mrow> <m:mn>16</m:mn> </m:msup> </m:mrow> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> </m:mfrac> <m:mo maxsize=\"260%\" minsize=\"260%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0335.png\" /> <jats:tex-math>\\zeta(3)=\\frac{4\\pi^{2}}{21}\\log\\Biggl{(}\\frac{e^{\\frac{4G}{\\pi}}\\mathcal{C}_{% 3}\\bigl{(}\\frac{1}{4}\\bigr{)}^{16}}{\\sqrt{2}}\\Biggr{)},</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:italic>G</jats:italic> is Catalan’s constant and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>4</m:mn> </m:mfrac> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0418.png\" /> <jats:tex-math>{\\mathcal{C}_{3}(\\frac{1}{4})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the special value of Kurokawa and Koyama’s multiple cosine function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0420.png\" /> <jats:tex-math>{\\mathcal{C}_{3}(x)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfrac> <m:mn>1</m:mn> <m:mn>4</m:mn> </m:mfrac> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0393.png\" /> <jats:tex-math>{\\frac{1}{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, we prove several series representations for the logarithm of multiple cosine functions <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>log</m:mi> <m:mo>⁡</m:mo> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mi>r</m:mi> </m:msub> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mfrac> <m:mi>x</m:mi> <m:mn>2</m:mn> </m:mfrac> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0407.png\" /> <jats:tex-math>{\\log\\mathcal{C}_{r}(\\frac{x}{2})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> by zeta functions, <jats:italic>L</jats:italic>-functions or polylogarithms. One of them leads to another expression of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ζ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0439.png\" /> <jats:tex-math>{\\zeta(3)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>ζ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mn>72</m:mn> <m:mo>⁢</m:mo> <m:msup> <m:mi>π</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mn>11</m:mn> </m:mfrac> <m:mo>⁢</m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">(</m:mo> <m:mfrac> <m:mrow> <m:msup> <m:mn>3</m:mn> <m:mfrac> <m:mn>1</m:mn> <m:mn>72</m:mn> </m:mfrac> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">(</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>6</m:mn> </m:mfrac> <m:mo maxsize=\"120%\" minsize=\"120%\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒞</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">(</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>6</m:mn> </m:mfrac> <m:mo maxsize=\"120%\" minsize=\"120%\">)</m:mo> </m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mn>3</m:mn> </m:mfrac> </m:msup> </m:mrow> </m:mfrac> <m:mo maxsize=\"260%\" minsize=\"260%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0337.png\" /> <jats:tex-math>\\zeta(3)=\\frac{72\\pi^{2}}{11}\\log\\Biggl{(}\\frac{3^{\\frac{1}{72}}\\mathcal{C}_{3% }\\bigl{(}\\frac{1}{6}\\bigr{)}}{\\mathcal{C}_{2}\\bigl{(}\\frac{1}{6}\\bigr{)}^{% \\frac{1}{3}}}\\Biggr{)}.</jats:tex-math> </jats:alternatives> </jats:disp-formula>","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0426","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1769, Euler proved the following result: 0 π 2 log ( sin θ ) 𝑑 θ = - π 2 log 2 . \int_{0}^{\frac{\pi}{2}}\log(\sin\theta)\,d\theta=-\frac{\pi}{2}\log 2. In this paper, as a generalization, we evaluate the definite integrals 0 x θ r - 2 log ( cos θ 2 ) 𝑑 θ \int_{0}^{x}\theta^{r-2}\log\biggl{(}\cos\frac{\theta}{2}\biggr{)}\,d\theta for r = 2 , 3 , 4 , r=2,3,4,\dots . We show that it can be expressed by the special values of Kurokawa and Koyama’s multiple cosine functions 𝒞 r ( x ) {\mathcal{C}_{r}(x)} or by the special values of alternating zeta and Dirichlet lambda functions. In particular, we get the following explicit expression of the zeta value: ζ ( 3 ) = 4 π 2 21 log ( e 4 G π 𝒞 3 ( 1 4 ) 16 2 ) , \zeta(3)=\frac{4\pi^{2}}{21}\log\Biggl{(}\frac{e^{\frac{4G}{\pi}}\mathcal{C}_{% 3}\bigl{(}\frac{1}{4}\bigr{)}^{16}}{\sqrt{2}}\Biggr{)}, where G is Catalan’s constant and 𝒞 3 ( 1 4 ) {\mathcal{C}_{3}(\frac{1}{4})} is the special value of Kurokawa and Koyama’s multiple cosine function 𝒞 3 ( x ) {\mathcal{C}_{3}(x)} at 1 4 {\frac{1}{4}} . Furthermore, we prove several series representations for the logarithm of multiple cosine functions log 𝒞 r ( x 2 ) {\log\mathcal{C}_{r}(\frac{x}{2})} by zeta functions, L-functions or polylogarithms. One of them leads to another expression of ζ ( 3 ) {\zeta(3)} : ζ ( 3 ) = 72 π 2 11 log ( 3 1 72 𝒞 3 ( 1 6 ) 𝒞 2 ( 1 6 ) 1 3 ) . \zeta(3)=\frac{72\pi^{2}}{11}\log\Biggl{(}\frac{3^{\frac{1}{72}}\mathcal{C}_{3% }\bigl{(}\frac{1}{6}\bigr{)}}{\mathcal{C}_{2}\bigl{(}\frac{1}{6}\bigr{)}^{% \frac{1}{3}}}\Biggr{)}.
欧拉积分、多重余弦函数和 zeta 值
1769 年,欧拉证明了以下结果:∫ 0 π 2 log ( sin θ ) 𝑑 θ = - π 2 log 2 。 \int_{0}^{\frac{\pi}{2}}\log(\sin\theta)\,d\theta=-\frac{\pi}{2}\log 2. 在本文中,作为一种概括,我们评估了 ∫ 0 x θ r - 2 log ( cos θ 2 ) 𝑑 θ \int_{0}^{x}\theta^{r-2}\log\biggl{(}\cos\frac\{theta}{2}\biggr{)}\,d\theta 对于 r = 2 , 3 , 4 , ... r=2,3,4,\dots 的定积分。我们证明它可以用黑川和小山的多重余弦函数 𝒞 r ( x ) {\mathcal{C}_{r}(x)} 的特殊值或交替zeta 和 Dirichlet lambda 函数的特殊值来表示。特别是,我们可以得到以下zeta 值的明确表达式: ζ ( 3 ) = 4 π 2 21 log ( e 4 G π 𝒞 3 ( 1 4 ) 16 2 ) , \zeta(3)=\frac{4\pi^{2}}{21}\log\Biggl{(}\frac{e^{\frac{4G}{\pi}}\mathcal{C}_{% 3}\bigl{(}\frac{1}{4}\bigr{)}^{16}}{\sqrt{2}}\Biggr{)}, 其中 G 是卡塔兰常数,𝒞 3 ( 1 4 ) {\mathcal{C}_{3}(\frac{1}{4})} 是 Kurokawa 和 Koyama 的多重余弦函数𝒞 3 ( x ) {\mathcal{C}_{3}(x)} 在 1 4 {\frac{1}{4}} 的特殊值。 .此外,我们还证明了多个余弦函数 log 𝒞 r ( x 2 ) {\logmathcal{C}_{r}(\frac{x}{2})} 的对数用 zeta 函数、L 函数或多对数表示的几个数列。其中一个函数引出了 ζ ( 3 ) {\zeta(3)} 的另一个表达式: ζ ( 3 ) = 72 π 2 11 log ( 3 1 72 𝒞 3 ( 1 6 ) 𝒞 2 ( 1 6 ) 1 3 ) 。 \zeta(3)=\frac{72\pi^{2}}{11}\log\Biggl{(}\frac{3^{\frac{1}{72}}\mathcal{C}_{3% }\bigl{(}\frac{1}{6}\bigr{)}}{\mathcal{C}_{2}\bigl{(}\frac{1}{6}\bigr{)}^{% \frac{1}{3}}}\Biggr{)}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信