Estimates of Picard modular cusp forms

IF 1 3区 数学 Q1 MATHEMATICS
Anilatmaja Aryasomayajula, Baskar Balasubramanyam, Dyuti Roy
{"title":"Estimates of Picard modular cusp forms","authors":"Anilatmaja Aryasomayajula, Baskar Balasubramanyam, Dyuti Roy","doi":"10.1515/forum-2023-0079","DOIUrl":null,"url":null,"abstract":"In this article, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0368.png\" /> <jats:tex-math>{n\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we compute asymptotic, qualitative, and quantitative estimates of the Bergman kernel of Picard modular cusp forms associated to torsion-free, cocompact subgroups of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>SU</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>ℂ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0306.png\" /> <jats:tex-math>{\\mathrm{SU}((n,1),\\mathbb{C})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The main result of the article is the following result. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>⊂</m:mo> <m:mrow> <m:mi>SU</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mi mathvariant=\"script\">𝒪</m:mi> <m:mi>K</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0229.png\" /> <jats:tex-math>{\\Gamma\\subset\\mathrm{SU}((2,1),\\mathcal{O}_{K})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a torsion-free subgroup of finite index, where <jats:italic>K</jats:italic> is a totally imaginary field. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi mathvariant=\"script\">ℬ</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mi>k</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0408.png\" /> <jats:tex-math>{{{\\mathcal{B}_{\\Gamma}^{k}}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the Bergman kernel associated to the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒮</m:mi> <m:mi>k</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0300.png\" /> <jats:tex-math>{\\mathcal{S}_{k}(\\Gamma)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, complex vector space of weight-<jats:italic>k</jats:italic> cusp forms with respect to Γ. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>𝔹</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0278.png\" /> <jats:tex-math>{\\mathbb{B}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the 2-dimensional complex ball endowed with the hyperbolic metric, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>X</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo>:=</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>\\</m:mo> <m:msup> <m:mi>𝔹</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0224.png\" /> <jats:tex-math>{X_{\\Gamma}:=\\Gamma\\backslash\\mathbb{B}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the quotient space, which is a noncompact complex manifold of dimension 2. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mo>⋅</m:mo> <m:msub> <m:mo stretchy=\"false\">|</m:mo> <m:mi>pet</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0411.png\" /> <jats:tex-math>{|\\cdot|_{\\mathrm{pet}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the point-wise Petersson norm on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒮</m:mi> <m:mi>k</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0300.png\" /> <jats:tex-math>{\\mathcal{S}_{k}(\\Gamma)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≫</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0364.png\" /> <jats:tex-math>{k\\gg 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we have the following estimate: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:munder> <m:mo movablelimits=\"false\">sup</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>X</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> </m:mrow> </m:munder> <m:mo>⁡</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:msubsup> <m:mi mathvariant=\"script\">ℬ</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mi>k</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>pet</m:mi> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>O</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>k</m:mi> <m:mfrac> <m:mn>5</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0137.png\" /> <jats:tex-math>\\sup_{z\\in X_{\\Gamma}}|{{\\mathcal{B}_{\\Gamma}^{k}}}(z)|_{\\mathrm{pet}}=O_{% \\Gamma}(k^{\\frac{5}{2}}),</jats:tex-math> </jats:alternatives> </jats:disp-formula> where the implied constant depends only on Γ.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0079","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, for n 2 {n\geq 2} , we compute asymptotic, qualitative, and quantitative estimates of the Bergman kernel of Picard modular cusp forms associated to torsion-free, cocompact subgroups of SU ( ( n , 1 ) , ) {\mathrm{SU}((n,1),\mathbb{C})} . The main result of the article is the following result. Let Γ SU ( ( 2 , 1 ) , 𝒪 K ) {\Gamma\subset\mathrm{SU}((2,1),\mathcal{O}_{K})} be a torsion-free subgroup of finite index, where K is a totally imaginary field. Let Γ k {{{\mathcal{B}_{\Gamma}^{k}}}} denote the Bergman kernel associated to the 𝒮 k ( Γ ) {\mathcal{S}_{k}(\Gamma)} , complex vector space of weight-k cusp forms with respect to Γ. Let 𝔹 2 {\mathbb{B}^{2}} denote the 2-dimensional complex ball endowed with the hyperbolic metric, and let X Γ := Γ \ 𝔹 2 {X_{\Gamma}:=\Gamma\backslash\mathbb{B}^{2}} denote the quotient space, which is a noncompact complex manifold of dimension 2. Let | | pet {|\cdot|_{\mathrm{pet}}} denote the point-wise Petersson norm on 𝒮 k ( Γ ) {\mathcal{S}_{k}(\Gamma)} . Then, for k 1 {k\gg 1} , we have the following estimate: sup z X Γ | Γ k ( z ) | pet = O Γ ( k 5 2 ) , \sup_{z\in X_{\Gamma}}|{{\mathcal{B}_{\Gamma}^{k}}}(z)|_{\mathrm{pet}}=O_{% \Gamma}(k^{\frac{5}{2}}), where the implied constant depends only on Γ.
皮卡尔模块顶点形式的估计值
在本文中,对于 n ≥ 2 {n\geq 2} ,我们计算了与 SU ( ( n , 1 ) , ℂ) 的无扭转、共偶子群相关的皮卡尔模块尖顶形式的伯格曼核的渐近、定性和定量估计值。 {\mathrm{SU}((n,1),\mathbb{C})}。文章的主要结果如下。设 Γ ⊂ SU ( ( 2 , 1 ) , 𝒪 K ) {\Gamma\subset\mathrm{SU}((2,1),\mathcal{O}_{K})} 是一个有限索引的无扭子群,其中 K 是一个完全虚域。让 ℬ Γ k {{\mathcal{B}_{\Gamma}^{k}}}} 表示与 𝒮 k ( Γ ) {\mathcal{S}_{k}(\Gamma)} 相关的伯格曼核,它是关于 Γ 的权重-k 尖顶形式的复向量空间。让 𝔹 2 {\mathbb{B}^{2}} 表示赋有双曲度量的二维复球,让 X Γ := Γ \ 𝔹 2 {X_{Gamma}:=\Gamma\backslash\mathbb{B}^{2}} 表示商空间,它是维数为 2 的非紧凑复流形。让 |⋅ | pet {|\cdot|_{\mathrm{pet}}} 表示𝒮 k ( Γ ) 上的点向彼得森规范 {\mathcal{S}_{k}(\Gamma)} 。 我们有如下估计: sup z ∈ X Γ | ℬ Γ k ( z ) | pet = O Γ ( k 5 2 ) 、 |{{sup_{z\in X_{\Gamma}}|{{mathcal{B}_{\Gamma}^{k}}}(z)|_{{mathrm{pet}}=O_{% \Gamma}(k^{frac{5}{2}}),其中隐含的常数只取决于 Γ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信