Triangles with one fixed side–length, a Furstenberg-type problem, and incidences in finite vector spaces

IF 1 3区 数学 Q1 MATHEMATICS
Thang Pham
{"title":"Triangles with one fixed side–length, a Furstenberg-type problem, and incidences in finite vector spaces","authors":"Thang Pham","doi":"10.1515/forum-2023-0470","DOIUrl":null,"url":null,"abstract":"The first goal of this paper is to prove a sharp condition to guarantee of having a positive proportion of all congruence classes of triangles in given sets in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0275.png\" /> <jats:tex-math>{\\mathbb{F}_{q}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. More precisely, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo>,</m:mo> <m:mi>C</m:mi> </m:mrow> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0164.png\" /> <jats:tex-math>{A,B,C\\subset\\mathbb{F}_{q}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>C</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:msup> </m:mrow> <m:mo>≫</m:mo> <m:msup> <m:mi>q</m:mi> <m:mn>4</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0450.png\" /> <jats:tex-math>{|A||B||C|^{\\frac{1}{2}}\\gg q^{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>λ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0267.png\" /> <jats:tex-math>{\\lambda\\in\\mathbb{F}_{q}\\setminus\\{0\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of congruence classes of triangles with vertices in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:mo>×</m:mo> <m:mi>B</m:mi> <m:mo>×</m:mo> <m:mi>C</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0174.png\" /> <jats:tex-math>{A\\times B\\times C}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and one side-length λ is at least <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi /> <m:mo>≫</m:mo> <m:msup> <m:mi>q</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0261.png\" /> <jats:tex-math>{\\gg q^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In higher dimensions, we obtain similar results for <jats:italic>k</jats:italic>-simplex but under a slightly stronger condition. Compared to the well-known <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0195.png\" /> <jats:tex-math>{L^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> method in the literature, our approach offers better results in both conditions and conclusions. When <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:mo>=</m:mo> <m:mi>B</m:mi> <m:mo>=</m:mo> <m:mi>C</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0168.png\" /> <jats:tex-math>{A=B=C}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the second goal of this paper is to give a new and unified proof of the best current results on the distribution of simplex due to Bennett, Hart, Iosevich, Pakianathan and Rudnev (2017) and McDonald (2020). The third goal of this paper is to study a Furstenberg-type problem associated to a set of rigid motions. The main ingredients in our proofs are incidence bounds between points and rigid motions. While the incidence bounds for large sets are due to the author and Semin Yoo (2023), the bound for small sets will be proved by using a point–line incidence bound in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mn>3</m:mn> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0276.png\" /> <jats:tex-math>{\\mathbb{F}_{q}^{3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> due to Kollár (2015).","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"2016 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0470","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The first goal of this paper is to prove a sharp condition to guarantee of having a positive proportion of all congruence classes of triangles in given sets in 𝔽 q 2 {\mathbb{F}_{q}^{2}} . More precisely, for A , B , C 𝔽 q 2 {A,B,C\subset\mathbb{F}_{q}^{2}} , if | A | | B | | C | 1 2 q 4 {|A||B||C|^{\frac{1}{2}}\gg q^{4}} , then for any λ 𝔽 q { 0 } {\lambda\in\mathbb{F}_{q}\setminus\{0\}} , the number of congruence classes of triangles with vertices in A × B × C {A\times B\times C} and one side-length λ is at least q 2 {\gg q^{2}} . In higher dimensions, we obtain similar results for k-simplex but under a slightly stronger condition. Compared to the well-known L 2 {L^{2}} method in the literature, our approach offers better results in both conditions and conclusions. When A = B = C {A=B=C} , the second goal of this paper is to give a new and unified proof of the best current results on the distribution of simplex due to Bennett, Hart, Iosevich, Pakianathan and Rudnev (2017) and McDonald (2020). The third goal of this paper is to study a Furstenberg-type problem associated to a set of rigid motions. The main ingredients in our proofs are incidence bounds between points and rigid motions. While the incidence bounds for large sets are due to the author and Semin Yoo (2023), the bound for small sets will be proved by using a point–line incidence bound in 𝔽 q 3 {\mathbb{F}_{q}^{3}} due to Kollár (2015).
具有一个固定边长的三角形、Furstenberg 型问题和有限向量空间中的事件
本文的第一个目标是证明一个尖锐的条件,以保证在𝔽 q 2 {\mathbb{F}_{q}^{2}} 中给定集合中所有全等类三角形的比例为正。 .更确切地说,对于 A , B , C ⊂ 𝔽 q 2 {A,B,C\subset\mathbb{F}_{q}^{2}} . 如果 | A | | B | | C | 1 2 ≫ q 4 {|A||B||C|^{\frac{1}{2}}\gg q^{4}} ,则 则对于任意 λ∈ 𝔽 q ∖ { 0 } {\lambda\in\mathbb{F}_{q}\setminus\{0\}} ,顶点在 A × B × C {A\times B\times C} 中且边长为 λ 的三角形的全等类的数目至少为 ≫ q 2 {\gg q^{2}} 。 .在更高维度中,我们得到了 k-simplex 的类似结果,但条件稍强。与文献中著名的 L 2 {L^{2}} 方法相比,我们的方法在条件和结论上都提供了更好的结果。当 A = B = C {A=B=C} 时 本文的第二个目标是对 Bennett、Hart、Iosevich、Pakianathan 和 Rudnev (2017) 以及 McDonald (2020) 提出的关于单纯形分布的当前最佳结果给出新的统一证明。本文的第三个目标是研究与一组刚性运动相关的 Furstenberg 型问题。我们证明的主要内容是点与刚性运动之间的入射界限。大集合的入射边界由作者和 Semin Yoo (2023) 提出,而小集合的边界将通过使用 Kollár (2015) 提出的𝔽 q 3 {\mathbb{F}_{q}^{3}} 中的点线入射边界来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信