On projections of the tails of a power

IF 1 3区 数学 Q1 MATHEMATICS
Samuel M. Corson, Saharon Shelah
{"title":"On projections of the tails of a power","authors":"Samuel M. Corson, Saharon Shelah","doi":"10.1515/forum-2022-0375","DOIUrl":null,"url":null,"abstract":"Let 𝜅 be an inaccessible cardinal, 𝔘 a universal algebra, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0001.png\" /> <jats:tex-math>\\sim</jats:tex-math> </jats:alternatives> </jats:inline-formula> the equivalence relation on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"fraktur\">U</m:mi> <m:mi>κ</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0002.png\" /> <jats:tex-math>\\mathfrak{U}^{\\kappa}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of eventual equality. From mild assumptions on 𝜅, we give general constructions of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">E</m:mi> <m:mo>∈</m:mo> <m:mi>End</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">U</m:mi> <m:mi>κ</m:mi> </m:msup> <m:mo rspace=\"0em\">/</m:mo> <m:mo lspace=\"0em\" rspace=\"0em\">∼</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0003.png\" /> <jats:tex-math>\\mathcal{E}\\in\\operatorname{End}(\\mathfrak{U}^{\\kappa}/{\\sim})</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi mathvariant=\"script\">E</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">∘</m:mo> <m:mi mathvariant=\"script\">E</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mi mathvariant=\"script\">E</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0004.png\" /> <jats:tex-math>\\mathcal{E}\\circ\\mathcal{E}=\\mathcal{E}</jats:tex-math> </jats:alternatives> </jats:inline-formula> which do not descend from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>End</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">U</m:mi> <m:mi>κ</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0005.png\" /> <jats:tex-math>\\Delta\\in\\operatorname{End}(\\mathfrak{U}^{\\kappa})</jats:tex-math> </jats:alternatives> </jats:inline-formula> having small strong supports. As an application, there exists an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">E</m:mi> <m:mo>∈</m:mo> <m:mi>End</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>κ</m:mi> </m:msup> <m:mo rspace=\"0em\">/</m:mo> <m:mo lspace=\"0em\" rspace=\"0em\">∼</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0006.png\" /> <jats:tex-math>\\mathcal{E}\\in\\operatorname{End}(\\mathbb{Z}^{\\kappa}/{\\sim})</jats:tex-math> </jats:alternatives> </jats:inline-formula> which does not come from a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>End</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>κ</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0007.png\" /> <jats:tex-math>\\Delta\\in\\operatorname{End}(\\mathbb{Z}^{\\kappa})</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"45 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2022-0375","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝜅 be an inaccessible cardinal, 𝔘 a universal algebra, and \sim the equivalence relation on U κ \mathfrak{U}^{\kappa} of eventual equality. From mild assumptions on 𝜅, we give general constructions of E End ( U κ / ) \mathcal{E}\in\operatorname{End}(\mathfrak{U}^{\kappa}/{\sim}) satisfying E E = E \mathcal{E}\circ\mathcal{E}=\mathcal{E} which do not descend from Δ End ( U κ ) \Delta\in\operatorname{End}(\mathfrak{U}^{\kappa}) having small strong supports. As an application, there exists an E End ( Z κ / ) \mathcal{E}\in\operatorname{End}(\mathbb{Z}^{\kappa}/{\sim}) which does not come from a Δ End ( Z κ ) \Delta\in\operatorname{End}(\mathbb{Z}^{\kappa}) .
关于幂的尾部投影
让 𝜅 是一个不可访问的红心,𝔘 是一个普遍代数,∼ \sim 是 U κ \mathfrak{U}^{\kappa} 上最终相等的等价关系。根据对𝜅、我们给出了 E∈ End ( U κ / ∼ ) 的一般构造 \mathcal{E}\in\operatorname{End}(\mathfrak{U}^{\kappa}/{\sim}) 满足 E ∘ E = E \mathcal{E}\circ\mathcal{E}=\mathcal{E} 它不会从具有小强支持的 Δ∈ End ( U κ ) \Delta\in\operatorname{End}(\mathfrak{U}^{\kappa}) 下降。作为应用,存在一个 E∈ End ( Z κ / ∼ ) ( (mathcal{E}\in\operatorname{End}(\mathbb{Z}^{\kappa}}/{\sim})),它不是来自一个 Δ∈ End ( Z κ ) ( (Delta\in\operatorname{End}(\mathbb{Z}^{\kappa}))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信