Some q-supercongruences from a q-analogue of Watson's 3 F 2 summation

IF 1 3区 数学 Q1 MATHEMATICS
Victor J. W. Guo
{"title":"Some q-supercongruences from a q-analogue of Watson's 3 F 2 summation","authors":"Victor J. W. Guo","doi":"10.1515/forum-2023-0475","DOIUrl":null,"url":null,"abstract":"We give some <jats:italic>q</jats:italic>-supercongruences from a <jats:italic>q</jats:italic>-analogue of Watson’s <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mmultiscripts> <m:mi>F</m:mi> <m:mn>2</m:mn> <m:none /> <m:mprescripts /> <m:mn>3</m:mn> <m:none /> </m:mmultiscripts> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0475_eq_0206.png\" /> <jats:tex-math>{{}_{3}F_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> summation and the method of “creative microscoping”, introduced by the author and Zudilin. These <jats:italic>q</jats:italic>-supercongruences may be considered as further generalizations of the (A.2) supercongruence of Van Hamme modulo <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0475_eq_0181.png\" /> <jats:tex-math>{p^{3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0475_eq_0180.png\" /> <jats:tex-math>{p^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any odd prime <jats:italic>p</jats:italic>. Meanwhile, we confirm a supercongruence conjecture of Wang and Yue through establishing its <jats:italic>q</jats:italic>-analogue.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0475","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give some q-supercongruences from a q-analogue of Watson’s F 2 3 {{}_{3}F_{2}} summation and the method of “creative microscoping”, introduced by the author and Zudilin. These q-supercongruences may be considered as further generalizations of the (A.2) supercongruence of Van Hamme modulo p 3 {p^{3}} or p 2 {p^{2}} for any odd prime p. Meanwhile, we confirm a supercongruence conjecture of Wang and Yue through establishing its q-analogue.
从沃森 3 F 2 求和的 q 类比中得出的一些 q-supercongruences
我们从沃森的 F 2 3 {{}_{3}F_{2}} 求和的 q-analogue 以及作者和祖迪林提出的 "创造性微观 "方法中给出了一些 q-supercongruences 。这些 q 超共形可以看作是凡-哈姆(Van Hamme)对任意奇素数 p 的 p 3 {p^{3}} 或 p 2 {p^{2}} 模的 (A.2) 超共形的进一步推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信