{"title":"Gaudichaudione H ameliorates liver fibrosis and inflammation by targeting NRF2 signaling pathway","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.020","DOIUrl":"10.1016/j.freeradbiomed.2024.09.020","url":null,"abstract":"<div><div>Gaudichaudione H (GH) is a natural small molecular compound isolated from <em>Garcinia oligantha Merr</em>. (Clusiaceae). Being an uncommon rare caged polyprenylated xanthone, the potential pharmacological functions of GH remain to be fully elucidated currently. In this study, we primarily focused on identifying potential bioavailable targets and elucidating related therapeutic actions. Herein, the network pharmacology analysis, metabolomics analysis and genome-wide mRNA transcription assay were performed firstly to predict the major pharmacological action and potential targets of GH. To confirm the hypothesis, gene knockout model was created using CRISPR/Cas9 method. The pharmacological action of GH was evaluated <em>in vitro</em> and <em>in vivo</em>. Firstly, our results of network pharmacology analysis and omics assay indicated that GH significantly activated NRF2 signaling pathway, and the function could be associated with liver disease treatment. Then, the pharmacological action of GH was evaluated <em>in vitro</em> and <em>in vivo</em>. The treatment with GH significantly increased the protein levels of NRF2 and promoted the transcription of NRF2 downstream genes. Further analysis suggested that GH regulated NRF2 through an autophagy-mediated non-canonical mechanism. Additionally, the administration of GH effectively protected the liver from carbon tetrachloride (CCl<sub>4</sub>)-induced liver fibrosis and inflammation, which depended on the activation of NRF2 in hepatic stellate cells and inflammatory cells respectively. Collectively, our findings underscore the potential therapeutic effect of GH on alleviating hepatic fibrosis and inflammation through the augmentation of NRF2 signaling pathway, providing a promising avenue for the treatment of liver fibrosis and inflammation in clinical settings.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of tau K677 lactylation on ferritinophagy and ferroptosis in Alzheimer's disease","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.021","DOIUrl":"10.1016/j.freeradbiomed.2024.09.021","url":null,"abstract":"<div><div>Alzheimer's disease (AD) is characterized by cognitive decline and the accumulation of amyloid-beta plaques and hyperphosphorylated tau protein. The role of tau lactylation at the K677 site in AD progression is not well understood. This study explores how tau K677 lactylation affects ferritinophagy, ferroptosis, and their functions in an AD mouse model. Results show that mutating the K677 site to R reduces tau lactylation and inhibits ferroptosis by regulating iron metabolism factors like NCOA4 and FTH1.Tau-mutant mice showed improved memory and learning skills compared to wild-type mice. The mutation also reduced neuronal damage and was associated with decreased tau lactylation at the K677 site, regardless of phosphorylated tau levels. Gene set enrichment analysis showed that lactylation at this site was linked to the MAPK pathway, which was important for ferritinophagy in AD mice. In summary, our research indicates that the K677 mutation in tau protein may protect against AD by influencing ferritinophagy and ferroptosis through MAPK signaling pathways. Understanding these modifications in tau could lead to new treatments for AD.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of intermittent exposure to hypobaric hypoxia and cold on skeletal muscle regeneration: Mitochondrial dynamics, protein oxidation and turnover","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.032","DOIUrl":"10.1016/j.freeradbiomed.2024.09.032","url":null,"abstract":"<div><div>Muscle injuries and the subsequent regeneration events compromise muscle homeostasis at morphological, functional and molecular levels. Among the molecular alterations, those derived from the mitochondrial function are especially relevant. We analysed the mitochondrial dynamics, the redox balance, the protein oxidation and the main protein repairing mechanisms after 9 days of injury in the rat gastrocnemius muscle. During the recovery rats were exposed to intermittent cold exposure (ICE), intermittent hypobaric hypoxia (IHH), and both simultaneous combined stimuli. Non-injured contralateral legs were also analysed to evaluate the specific effects of the three environmental exposures. Our results showed that ICE enhanced mitochondrial adaptation by improving the electron transport chain efficiency during muscle recovery, decreased the expression of regulatory subunit of proteasome and accumulated oxidized proteins. Exposure to IHH did not show mitochondrial compensation or increased protein turnover mechanisms; however, no accumulation of oxidized proteins was observed. Both ICE and IHH, when applied separately, elicited an increased expression of eNOS, which could have played an important role in accelerating muscle recovery. The combined effect of ICE and IHH led to a complex response that could potentially impede optimal mitochondrial function and enhanced the accumulation of protein oxidation. These findings underscore the nuanced role of environmental stressors in the muscle healing process and their implications for optimizing recovery strategies.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ubiquitination of ATAD3A by TRIM25 exacerbates cerebral ischemia-reperfusion injury via regulating PINK1/Parkin signaling pathway-mediated mitophagy","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.029","DOIUrl":"10.1016/j.freeradbiomed.2024.09.029","url":null,"abstract":"<div><h3>Background</h3><div>Cerebral ischemia-reperfusion injury (CI/RI) is a complex process leading to neuronal damage and death, with mitophagy implicated in its pathogenesis. However, the significance of mitophagy in CI/RI remains debated.</div></div><div><h3>Hypothesis</h3><div>We hypothesized that TRIM25 reduces ATAD3A expression by ubiquitinating ATAD3A, promoting mitophagy via the PINK1/Parkin pathway, and aggravating CI/RI.</div></div><div><h3>Study design</h3><div>Rat middle cerebral artery occlusion (MCAO) followed by reperfusion and oxygen-glucose deprivation and reoxygenation (OGD/R) in PC12 cells were used as animal and cell models, respectively.</div></div><div><h3>Methods</h3><div>To evaluate the success of the CI/R modeling, TTC and HE staining were employed. The determination of serum biochemical indexes was carried out using relative assay kits. The Western Blot analysis was employed to assess the expression of ATAD3A, TRIM25, as well as mitophagy-related proteins (PINK1, Parkin, P62, and LC3II/LC3I). The mRNA levels were detected using QRT-PCR. Mitochondrial membrane potential was assessed through JC-1 staining. Mitosox Red Assay Kit was utilized to measure mitochondrial reactive oxygen species levels in PC12 cells. Additionally, characterization of the mitophagy structure was performed using transmission electron microscopy (TEM).</div></div><div><h3>Results</h3><div>Our findings showed down-regulation of ATAD3A and up-regulation of TRIM25 in both in vivo and in vitro CI/RI models. Various experimental techniques such as Western Blot, JC-1 staining, Mitosox assay, Immunofluorescence assay, and TEM observation supported the occurrence of PINK1/Parkin signaling pathway-mediated mitophagy in both models. ATAD3A suppressed mitophagy, while TRIM25 promoted it during CI/RI injury. Additionally, the results indicated that TRIM25 interacted with and ubiquitinated ATAD3A via the proteasome pathway, affecting ATAD3A protein stability and expression.</div></div><div><h3>Conclusion</h3><div>TRIM25 promoted Pink1/Parkin-dependent excessive mitophagy by destabilizing ATAD3A, exacerbating CI/RI. Targeting TRIM25 and ATAD3A may offer therapeutic strategies for mitigating CI/RI and associated neurological damage.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of lipid radicals generated via cerebral ischemia/reperfusion injury using a radiolabeled nitroxide probe","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.025","DOIUrl":"10.1016/j.freeradbiomed.2024.09.025","url":null,"abstract":"<div><div>Reactive oxygen species generated via reperfusion cause lipid damage and induce lipid peroxidation, leading to cerebral ischemia/reperfusion injury and exacerbation of cerebral infarction. Lipid radicals are key molecules generated during lipid peroxidation. Therefore, understanding the spatiotemporal behavior of lipid radicals is important to improve the therapeutic outcomes of cerebral infarction. However, the behaviors of lipid radicals in the brain remain unclear. In this study, we aimed to evaluate the distribution of radioactivity in a transient middle cerebral artery occlusion (tMCAO) model using lipid radical detection probe [<sup>125</sup>I]<strong>1</strong> to assess the behaviors of lipid radicals after cerebral ischemia/reperfusion. The tMCAO model administered [<sup>125</sup>I]<strong>1</strong> exhibited significant differences in the timing and location of radioactivity accumulation between the ischemic and non-ischemic regions. Liquid chromatography/mass spectrometry analysis identified the lipid radical adducts formed by the reaction of <strong>1</strong> with the lipid radicals generated after reperfusion. More adducts were detected in the ischemic region samples than in the non-ischemic region samples. Therefore, <strong>1</strong> successfully detected the lipid radicals generated after cerebral ischemia/reperfusion. Overall, this study demonstrates the potential of nuclear medical imaging using radiolabeled <strong>1</strong> to detect the lipid radicals generated after cerebral ischemia/reperfusion. Our approach can aid in the development of new therapeutic agents scavenging lipid radicals after cerebral reperfusion by facilitating the determination of therapeutic efficacy and optimal administration period.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SIRT-1/RHOT-1/PGC-1α loop modulates mitochondrial biogenesis and transfer to offer resilience following endovascular stem cell therapy in ischemic stroke","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.022","DOIUrl":"10.1016/j.freeradbiomed.2024.09.022","url":null,"abstract":"<div><div>Current clinical interventions for stroke majorly involve thrombolysis or thrombectomy, however, cessation of the progressive deleterious cellular cascades post-stroke and long-term neuroprotection are yet to be explored. Mitochondria are highly vulnerable organelles and their dysfunction is one of the detrimental consequences following stroke. Mitochondria dysregulation activate unfavourable cellular events over a period of time that leads to the collapse of neuronal machinery in the brain. Hence, strategies to protect and replenish mitochondria in injured neurons may be useful and needs to be explored. Stem cell therapy in ischemic stroke holds a great promise. Past studies have shown beneficial outcomes of endovascularly delivered stem cells in both pre-clinical and clinical settings. Intra-arterial (IA) administration can provide more cells to the stroke foci and affected brain regions than intravenous administration. Supplying new mitochondria to the stroke-compromised neurons either in the core or penumbra by infused stem cells can help increase their survival and longevity. Previously, our lab has demonstrated that IA 1∗10<sup>5</sup> mesenchymal stem cells (MSCs) in rats were safe, efficacious and rendered neuroprotection by regulating neuronal calcineurin, modulating sirtuin1(SIRT-1) mediated inflammasome signaling, ameliorating endoplasmic reticulum-stress, alleviation of post-stroke edema and reducing cellular apoptosis. To explore further, our present study aims to investigate the potential of IA MSCs in protecting and replenishing mitochondria in the injured neurons post-stroke and the involvement of SIRT-1/RHOT-1/PGC-1α loop towards mitochondria transfer, biogenesis, and neuroprotection. This study will open new avenues for using stem cells for ischemic stroke in clinics as one of the future adjunctive therapies.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mapping of oxidative modifications on the alpha-keto glutarate dehydrogenase complex induced by singlet oxygen: Effects on structure and activity","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.024","DOIUrl":"10.1016/j.freeradbiomed.2024.09.024","url":null,"abstract":"<div><div>The large multi-subunit mitochondrial alpha-keto glutarate dehydrogenase (KGDH) complex plays a key, rate-determining, role in the tricarboxylic acid (Krebs) cycle, catalyzing the conversion of alpha-keto glutarate to succinyl-CoA. This complex is both a source and target of oxidants, but the sites of modification and association with structural changes and activity loss are poorly understood. We report here oxidative modifications induced by Rose Bengal (RB) in the presence of O<sub>2</sub>, a source of singlet oxygen (<sup>1</sup>O<sub>2</sub>). A rapid loss of activity was detected, with this being dependent on light exposure, illumination time, and the presence of RB and O<sub>2</sub>. Activity loss was enhanced by D<sub>2</sub>O (consistent with <sup>1</sup>O<sub>2</sub> involvement), but diminished by both pre- and (to a lesser extent) post-illumination addition of lipoic acid and lipoamide. Aggregates containing all three KGDH subunits were detected on photooxidation. LC-MS experiments provided evidence for oxidation at 45 sites, including specific Met, His, Trp, Tyr residues and the lipoyllysine active-site cofactor. Products include mono- and di-oxygenated species, and kynurenine from Trp. Mapping of the modifications to the 3-D structure showed that these are localized to both the inner channel and the external surface, consistent with reactions of free <sup>1</sup>O<sub>2</sub>, however the sites and extent of modification do not correlate with their solvent accessibility. These products are generated concurrently with loss of activity, indicative of strong links between these events. These data provide evidence for the impairment of KGDH activity by <sup>1</sup>O<sub>2</sub> via the oxidation of specific residues on the protein subunits of the complex.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lipid radicals and oxidized cholesteryl esters in low- and high-density lipoproteins in patients with β-thalassemia: Effects of iron overload and iron chelation therapy","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.026","DOIUrl":"10.1016/j.freeradbiomed.2024.09.026","url":null,"abstract":"<div><p>Iron overload results in lipid peroxidation (LPO) and the oxidative modification of circulating lipoproteins, which contributes to cardiovascular complications in patients with β-thalassemia. Investigating LPO may provide opportunities for the development of novel therapeutic strategies; however, the chemical pathways underlying iron overload-induced LPO in β-thalassemia lipoproteins remain unclear. In this study, we identified various species of lipid radicals (L<sup>•</sup>), the key mediators of LPO, and oxidized cholesteryl esters (oxCE) derived from the <em>in vitro</em> oxidation of major core lipids, cholesteryl linoleate (CE18:2) and cholesteryl arachidonate (CE20:4); the levels of these radical products in low-density lipoproteins (LDL) and high-density lipoproteins (HDL) were measured and compared between β-thalassemia patients and healthy subjects by using a specific fluorescent probe for L<sup>•</sup> with a liquid chromatography-tandem mass spectrometric method. Our results demonstrated that iron overload substantially decreased the levels of CE18:2 and CE20:4 substrates and α-tocopherol, resulting in higher levels of full-length and short-chain truncated L<sup>•</sup> and oxCE products. In particular, CE epoxyallyl radicals (<sup>•</sup>CE-O) were observed in the lipoproteins of β-thalassemia, revealing the pathological roles of iron overload in the progression of LPO. In addition, we found that intermission for two weeks of iron chelators can increase the production of these oxidized products; therefore, suggesting the beneficial effects of iron chelators in preventing LPO progression. In conclusion, our findings partly revealed the primary chemical pathway by which the LPO of circulating lipoproteins is influenced by iron overload and affected by iron chelation therapy. Moreover, we found that <sup>•</sup>CE + O shows potential as a sensitive biomarker for monitoring LPO in individuals with β-thalassemia.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0891584924006737/pdfft?md5=e6085020af1a514be0b8c3fdcb0d04d5&pid=1-s2.0-S0891584924006737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unconjugated bilirubin promotes uric acid restoration by activating hepatic AMPK pathway","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.023","DOIUrl":"10.1016/j.freeradbiomed.2024.09.023","url":null,"abstract":"<div><div>Hyperuricemia and its development to gout have reached epidemic proportions. Systemic hyperuricemia is facilitated by elevated activity of xanthine oxidase (XO), the sole source of uric acid in mammals. Here, we aim to investigate the role of bilirubin in maintaining circulating uric acid homeostasis. We observed serum bilirubin concentrations were inversely correlated with uric acid levels in humans with new-onset hyperuricemia and advanced gout in a clinical cohort consisting of 891 participants. We confirmed that bilirubin biosynthesis impairment recapitulated traits of hyperuricemia symptoms, exemplified by raised circulating uric acid levels and accumulated hepatic XO, and exacerbated mouse hyperuricemia development. Bilirubin administration significantly decreased circulating uric acid levels in hyperuricemia-inducing (HUA) mice receiving potassium oxonate (a uricase inhibitor) or fed with a high fructose diet. Finally, we proved that bilirubin ameliorated mouse hyperuricemia by increasing hepatic autophagy, restoring antioxidant defense and normalizing mitochondrial function in a manner dependent on AMPK pathway. Hepatocyte-specific <em>AMPKα</em> knockdown <em>via</em> adeno-associated virus (AAV) 8-TBG-mediated gene delivery compromised the efficacy of bilirubin in HUA mice. Our study demonstrates the deficiency of bilirubin in hyperuricemia progression, and the protective effects exerted by bilirubin against mouse hyperuricemia development, which may potentiate clinical management of hyperuricemia.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insulin-like growth factor-binding protein 7 exacerbates inflammatory response and lipid metabolism imbalance in alcohol-associated liver disease","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.006","DOIUrl":"10.1016/j.freeradbiomed.2024.09.006","url":null,"abstract":"<div><div>Alcohol-associated liver disease(ALD), caused by excessive alcohol consumption, are often associated with inflammatory outbreaks and lipid deposition in the liver. The role of Insulin-like growth factor-binding protein 7 (IGFBP7), an important metabolic regulator, in ALD, its underlying regulatory mechanism, and its potential implication in anti-ALD therapies remain unknown.</div><div>We investigated the effects of IGFBP7 on hepatic inflammation and lipid metabolism disruption in a mouse model of ALD. Mice were fed by chronic ethanol feeding plus a single binge of ethanol feeding(chronic-plus-single-binge model). In addition, ethanol exposure modeling studies were performed on cultured hepatocytes to verify molecular correlations.</div><div>The results showed that IGFBP7 expression was significantly elevated in the livers of mice and hepatocytes after chronic ethanol exposure. Subsequently, the results of a study by specific knockout of IGFBP7(IGFBP7-cKO) in mouse hepatocytes and lentiviral silencing of IGFBP7 <em>in vivo</em> suggested that IGFBP7 deletion could improve liver function levels in alcohol-fed mice; It also attenuated the outbreak of hepatitis factor and the disorder of lipid metabolism in mice.Using RNA-seq sequencing of mouse liver tissue, we found that IGFBP7 affects several downstream metabolic signaling pathways, including PPAR, MAPK, FoxO, etc. Then, we used the PPARα plasmid in hepatocytes and discovered that overexpressing PPARα reversed the impact of IGFBP7 on lipid metabolism disorders in hepatocytes.</div><div>In conclusion, IGFBP7 deficiency in alcohol-associated liver disease alleviates the decline in liver function and the imbalance of lipid metabolism in mice, attenuates the inflammatory outbreak, and affects a variety of downstream lipid metabolism factors by regulating PPARα. Hence, IGFBP7 may be an effective therapeutic target in the treatment of ALD.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}