So-Yeon Jeong, Ji Won Lee, Eun Ji Kim, Chi Won Lee, Tae Gwan Kim
{"title":"Comparison of crystal violet staining, microscopy with image analysis, and quantitative PCR to examine biofilm dynamics.","authors":"So-Yeon Jeong, Ji Won Lee, Eun Ji Kim, Chi Won Lee, Tae Gwan Kim","doi":"10.1093/femsle/fnae115","DOIUrl":"10.1093/femsle/fnae115","url":null,"abstract":"<p><p>Crystal-violet staining, microscopy with image analysis, and quantitative PCR (qPCR) were compared to examine biofilm dynamics. Biofilms of 30 polycultures comprising 15 bacterial species were monitored for 14 days. Collectively, qPCR (representing population) revealed a different growth pattern compared to staining (biomass) and microscopy (colonization): biomass and colonization gradually increased over time, whereas population increased rapidly for the first seven days and leveled off. Temporal forms were categorized into two growth patterns: continuous increase (CI) and non-continuous increase. Staining and microscopy showed similar odds of detecting the CI pattern (27 and 23 polycultures, respectively) across polycultures, greater than that of qPCR (14 polycultures) (P < 0.05). All three methods revealed the identical patterns for 13 polycultures. Staining with microscopy, staining with qPCR, and microscopy with qPCR found the same patterns in 22, 15, and 19 polycultures, respectively. Additionally, staining was quantitatively agreed with microscopy (P < 0.05; R2 > 0.50), whereas neither staining nor microscopy strongly agreed with qPCR (P < 0.05; R2 ≤ 0.22). Collectively, staining was more compatible with microscopy than qPCR in characterizing biofilm dynamics and quantifying biofilms owing to the difference between population growth and biofilm expansion. The concurrent use of qPCR with biomass estimations allows for accurate and comprehensive biofilm quantification.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SoxR-dependent regulation of sodA1 and its impact on Stenotrophomonas maltophilia survival under external oxidative stress.","authors":"Suparat Giengkam, Nisanart Charoenlap, Wirongrong Whangsuk, Kisana Bhinija, Skorn Mongkolsuk, Paiboon Vattanaviboon","doi":"10.1093/femsle/fnae112","DOIUrl":"10.1093/femsle/fnae112","url":null,"abstract":"<p><p>Stenotrophomonas maltophilia is an emerging global opportunistic pathogen that causes nosocomial infections. We demonstrated that the superoxide stress-sensing transcriptional regulator SoxR directly modulated the expression of an operon encompassing sodA1 (encoding manganese-containing superoxide dismutase) and fre (encoding putative flavin reductase) by directly binding to the operator site, which was located between the -35 and -10 motifs of the sodA1 promoter. It is known that upon exposure to the superoxide generators/redox-cycling drugs, the SoxR, which is bound to the operator site, became oxidized. This oxidation causes a conformational change of SoxR to an active form, enabling the upregulation of sodA1-fre gene expression. A ΔsodA1 was constructed, and the mutant showed enhanced sensitivity to the redox-cycling drugs, including menadione, plumbagin, and methyl viologen (paraquat), relative to its parental strain K279a. Thus, sodA1 may play a role in the survival of S. maltophilia under superoxide stress during either its saprophyte stage (e.g. exposure to redox-cycling drugs) or host-pathogen interactions.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing-Qing Zhi, Zhen-Long Wang, Pei-Bo Yuan, Lei He, Zhu-Mei He
{"title":"The GATA factor AreB regulates nitrogen metabolism, fungal development, and aflatoxin production in Aspergillus flavus.","authors":"Qing-Qing Zhi, Zhen-Long Wang, Pei-Bo Yuan, Lei He, Zhu-Mei He","doi":"10.1093/femsle/fnae110","DOIUrl":"10.1093/femsle/fnae110","url":null,"abstract":"<p><p>Nitrogen is important for fungal growth and development, and the GATA transcription factor AreA has been widely studied as a key regulator of nitrogen catabolite repression (NCR) in many fungi. However, AreB, another GATA transcription factor in the NCR pathway, remains less studied, and its role in Aspergillus flavus is still unclear. In this study, we characterized areB in A. flavus and investigated its role in regulating nitrogen utilization, fungal growth, and aflatoxin production. The areB gene produces three transcripts, with areB-α being the most abundantly expressed, particularly under nitrogen-limited conditions. Gene expression analysis via qPCR confirmed that areB acts as a negative regulator of NCR, as its deletion led to the upregulation of NCR-related genes under nitrogen-limiting conditions. Gene function analysis of areB revealed that its deletion impaired hyphal growth, reduced conidia production, and delayed conidial germination. Additionally, deletion of areB led to increased aflatoxin production, particularly under less favorable nitrogen sources, while overexpression of areB reduced aflatoxin levels. Furthermore, areB influenced sclerotia formation in a nitrogen-source-dependent manner. These findings reveal the multifaceted role of areB in nitrogen regulation, fungal development, and secondary metabolism, offering insights for controlling aflatoxin contamination and fungal growth.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functionally important components of the transcription elongation complex involved in Rho-dependent termination.","authors":"Ajay Khatri, Ranjan Sen","doi":"10.1093/femsle/fnae111","DOIUrl":"10.1093/femsle/fnae111","url":null,"abstract":"<p><p>Bacterial transcription terminator, Rho is an RNA (Ribonucleic Acid)-dependent ATPase that terminates transcription. Several structures of pretermination complexes of the Rho-transcription elongation complex (EC) revealed a static picture of components of the EC that come close to the nascent RNA-bound Rho, where many of the residues of EC reside ≤10 Å from the Rho residues. However, the in vitro-formed Rho-EC complexes do not reveal the in vivo Rho-EC dynamic interaction patterns during the termination process. Here we report synthetic defect analyses of various combinations of the mutations in RNAP β, β' and ω-subunits, NusA, NusG, and Rho proteins to delineate the functional network of this process. Several mutations in the β-flap and β'-Zn-finger and -Clamp helices domains of RNAP are synthetically defective in the presence of Rho mutants indicating functional involvement of these domains. Mutations in the NusA RNA-binding domains were synthetically defective with the Rho mutants suggesting its involvement. Our genetic analyses also revealed functional antagonisms between the ω-subunit of RNAP and the NusG-CTD (c-terminal domain) during termination. We concluded that the regions surrounding the RNA exit channel, the RNA-binding domains of NusA, the RNAP ω-subunit, and NusG-CTD constitute a functional network with Rho just before the onset of in vivo Rho-dependent termination.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pınar B Thomas, Nur Kaluç, Irmak N Çavlı, Bilge G Tuna
{"title":"Slx5/Slx8 SUMO-targeted ubiquitin ligase deficiency shortens lifespan due to increased mutation accumulation in yeast.","authors":"Pınar B Thomas, Nur Kaluç, Irmak N Çavlı, Bilge G Tuna","doi":"10.1093/femsle/fnae109","DOIUrl":"10.1093/femsle/fnae109","url":null,"abstract":"<p><p>Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress. Small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligases (STUbLs) play a critical role in mediating an adaptive response to various stresses. In this study, we investigated the effect of a STUbL, Slx5/Slx8, on CLS in budding yeast. We showed that both SLX5 and SLX8 deletions accelerate chronological aging, resulting in a decreased maximum and mean lifespan. slx5Δ cells were capable of entering or maintaining a quiescent state during aging. On the other hand, aging slx5Δ and slx8Δ cells had both increased spontaneous mutation accumulation. Our data together indicate that Slx5/Slx8 STUbL is required for normal rate of aging by preventing increased spontaneous mutation accumulation during aging.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rice husk- and lemongrass-derived eco-enzymes as potential food contact surface disinfectants against biofilm-forming foodborne pathogens.","authors":"Vickneish Vimalanathan, Hanan Hasan, Vickineshwari Kunasegaran, Kausalyaa Sarawanan, Monisha Ilangovan, Pratheep Sandrasaigaran","doi":"10.1093/femsle/fnae116","DOIUrl":"10.1093/femsle/fnae116","url":null,"abstract":"<p><p>This study aims to evaluate the rice husk (EE-R)- and lemongrass (EE-L)-derived eco-enzymes (EE) as alternatives to chemical-based disinfectants. The EE-R's and EE-L's antimicrobial activity were tested against Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus using a broth microdilution method. The antibiofilm activities of EE were determined using crystal violet staining. Lastly, the minimal contact time of EE for effectively reducing biofilm-forming pathogens (<25 CFU/ml) was assessed on various food contact surfaces (wood, glass, plastic, stainless steel, and marble). The results show that EE-R at 25%-50% concentration significantly inhibited P. aeruginosa and S. aureus while reducing the initial biofilm formation by 61% and 58%, respectively. In contrast, EE-L inhibited S. Typhimurium at a concentration of 12.5%-50% and P. aeruginosa at 25%-50%, with a strong preformed biofilm inhibition noticed for S. Typhimurium (70%). For the minimal contact time, EE-R superiorly inhibited P. aeruginosa (60 s) and S. aureus (120 s) on all contact surfaces, while EE-L needed 120 s to reduce P. aeruginosa and S. Typhimurium. These outcomes were comparable to sodium hypochlorite (NaOCl, 2.5%). The study's outcomes implicate the potential application of EE-R and EE-L as surface disinfectants against biofilm-forming bacteria, thus promoting safer food processing practices while minimizing environmental impacts.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladimir M Gorlenko, Denis S Grouzdev, Olga N Lunina, Vasil A Gaisin, Aleksandr A Ashikhmin, Maria A Sinetova
{"title":"A new mesophilic member of the Chloroflexota phylum 'Ca. Сhloroploca septentrionalis' from the meromictic lake Bol'shie Khruslomeny separated from the White Sea.","authors":"Vladimir M Gorlenko, Denis S Grouzdev, Olga N Lunina, Vasil A Gaisin, Aleksandr A Ashikhmin, Maria A Sinetova","doi":"10.1093/femsle/fnae113","DOIUrl":"10.1093/femsle/fnae113","url":null,"abstract":"<p><p>A new filamentous phototrophic bacterium Khr17 was isolated as an enrichment culture from the brackish polar lake Bol'shie Khruslomeny. The organism was a halotolerant, strictly anaerobic phototroph possessing photosystem II. Sulfide was required for phototrophic growth. The cells of bacterium Khr17 formed nonmotile, wavy trichomes surrounded by a sheath. The cells contained chlorosomes, gas vesicles, and storage granules. The antenna pigments of bacterium Khr17 were bacteriochlorophyll c and β- and γ-carotenes. The genome of Khr17 bacterium carries all the genes responsible for CO2 fixation via the 3-hydroxypropionate pathway. The genes encoding the proteins of the nitrogenase complex were not found. The DNA G + C content was 59.9%. The 16S rRNA gene sequence of isolate Khr17 exhibited 99.4% similarity to related species. The average nucleotide identity and digital DNA-DNA hybridization values for the isolate showed 91.9% and 46.9% similarity, respectively, to other 'Ca. Chloroploca' species. Based on its phenotypic and phylogenetic characteristics, classification of Khr17 as member of a new species, 'Ca. Chloroploca septentrionalis' sp. nov., was proposed. Members of the genus 'Ca. Chloroploca' have previously not been found in Arctic areas and in the plankton of meromictic lakes.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioaugmentation to enhance degradation of acetochlor and pretilachlor in water and sediment under anaerobic conditions.","authors":"Ha Danh Duc, Nguyen Thi Oanh","doi":"10.1093/femsle/fnae114","DOIUrl":"10.1093/femsle/fnae114","url":null,"abstract":"<p><p>Chloroacetamide herbicides are widely used to control weeds globally. In this study, three acetochlor-degrading mixed cultures using nitrate, sulfate, and ferric iron as electron acceptors were isolated and determined for their degradation under anaerobic conditions. The degradation rates of all mixed pure cultures in a mineral medium were not much different at 1 µM, while the rates at 50 µM were in the order: mixed culture using nitrate > sulfate > ferric iron as electron acceptors, giving 6.70, 6.13, and 4.85 µM/day, respectively. During acetochlor degradation, 2-ethyl-6-methyl-N-(ethoxymethyl)acetanilide, N-2-ethylphenyl acetamide, and 2-ethylaniline were transiently produced. Interestingly, the mixture of all cultures synergistically degraded pretilachlor although no individual strains could degrade the compound. Toluene and 2-ethylaniline were metabolites of pretilachlor degradation by the acetochlor-degrading bacteria. However, pretilachlor inhibited the acetochlor degradation by acetochlor-degrading bacteria. The inoculation of both acetochlor- and pretilachlor-degrading bacteria resulted in 91.4 ± 2.1% of acetochlor and 82.4 ± 2.6% of pretilachlor being utilized for 7 days. Moreover, the introduction of these degrading bacteria accelerated the degradation of both substrates contaminating water and sediment collected from a pond. This study provides insights into anaerobic degradation by pure cultures using different electron acceptors.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leah R Robinson, Caroline J McDevitt, Molly R Regan, Sophie L Quail, Crista B Wadsworth
{"title":"In vitro evolution of ciprofloxacin resistance in Neisseria commensals and derived mutation population dynamics in natural Neisseria populations.","authors":"Leah R Robinson, Caroline J McDevitt, Molly R Regan, Sophie L Quail, Crista B Wadsworth","doi":"10.1093/femsle/fnae107","DOIUrl":"10.1093/femsle/fnae107","url":null,"abstract":"<p><p>Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging 4 replicates of 4 different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing. 10/16 selected cells lines across the 4 species evolved ciprofloxacin resistance (≥ 1 ug/ml); with resistance-contributing mutations primarily emerging in DNA gyrase subunit A and B (gyrA and gyrB), topoisomerase IV subunits C and E (parC and parE), and the multiple transferable efflux pump repressor (mtrR). Of note, these derived mutations appeared in the same loci responsible for ciprofloxacin reduced susceptibility in the pathogenic Neisseria, suggesting conserved mechanisms of resistance across the genus. Additionally, we tested for zoliflodacin cross-resistance in evolved strain lines and found 6 lineages with elevated zoliflodacin minimum inhibitory concentrations. Finally, to interrogate the likelihood of experimentally derived mutations emerging and contributing to resistance in natural Neisseria, we used a population-based approach and identified GyrA 91I as a substitution circulating within commensal Neisseria populations and ParC 85C in a single gonococcal isolate. A small cluster of gonococcal isolates shared commensal alleles at parE, suggesting recent cross-species recombination events.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution and functional analysis of two-types of Quorum Sensing Gene Pairs, glaI1/glaR1 and glaI2/glaR2, in Burkholderia gladioli.","authors":"Kazumi Takita, Nobutaka Someya, Tomohiro Morohoshi","doi":"10.1093/femsle/fnae117","DOIUrl":"10.1093/femsle/fnae117","url":null,"abstract":"<p><p>Burkholderia gladioli produces a yellow-pigmented toxin called toxoflavin, and causes disease on a variety of plants. Previous studies have suggested that the pathogenicity of B. gladioli is regulated by an N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing (QS) system. In this study, complete genome sequencing revealed that B. gladioli pv. gladioli MAFF 302385 possesses two types of AHL synthase and AHL receptor gene pairs: glaI1/glaR1 and glaI2/glaR2. Disruption of QS genes revealed that the glaI1/glaR1 QS system regulated swarming motility, biofilm formation, and colony formation via N-octanoyl-l-homoserine lactone. Although Escherichia coli harboring glaI2 produced N-(3-hydroxyoctanoyl)-l-homoserine lactone and N-(3-hydroxydecanoyl)-l-homoserine lactone, the expression of glaI2 was not confirmed in MAFF 302385 cells. We also found that toxoflavin production was regulated by the glaI1/glaR1 QS system in liquid medium, but not on agar medium. When pathogenicity tests were performed on gladiolus leaves, the wild-type and QS mutants showed a similar level of disease. Our results demonstrated that only the glaI1/glaR1-mediated QS system is active in MAFF 302385, but major virulence factors, especially toxoflavin, are not completely dependent on the QS system.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}