Afef Najjari, Khaled Elmnasri, Hanene Cherif, Stephen Burleigh, Amel Guesmi, Mouna Mahjoubi, Javier A Linares-Pastén, Ameur Cherif, Hadda-Imene Ouzari
{"title":"Metataxonomic analysis of halophilic archaea community in two geothermal oases in the southern Tunisian Sahara.","authors":"Afef Najjari, Khaled Elmnasri, Hanene Cherif, Stephen Burleigh, Amel Guesmi, Mouna Mahjoubi, Javier A Linares-Pastén, Ameur Cherif, Hadda-Imene Ouzari","doi":"10.1093/femsle/fnae106","DOIUrl":null,"url":null,"abstract":"<p><p>This study assesses halophilic archaea's phylogenetic diversity in southern Tunisia's geothermal water. In the arid southern regions, limited surface freshwater resources make geothermal waters a vital source for oases and greenhouse irrigation. Three samples, including water, sediment, and halite soil crust, were collected downstream of two geothermal springs of the Ksar Ghilane (KGH) and Zaouet Al Aness (ZAN) oases, Tunisia. The samples were subjected to 16S rRNA gene sequencing using the Illumina Miseq sequencing approach. Several haloarchaea were identified in the geothermal springs. The average taxonomic composition revealed that 20 out of 33 genera were shared between the two geothermal sources, with uneven distribution, where the Halogranum genus was the most represented genus with an abundance of 18.9% and 11.58% for ZAW and KGH, respectively. Several unique site-specific genera were observed: Halonotius, Halopelagius, Natronorubrum, and Haloarcula in ZAN, and Haloprofundus, Halomarina, Halovivax, Haloplanus, Natrinema, Halobium, Natronoarchaeum, and Haloterrigena in the KGH pool. Most genus members are typically found in low-salinity ecosystems. These findings suggest that haloarchaea can disperse downstream from geothermal sources and may survive temperature and chemical fluctuations in the runoff.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study assesses halophilic archaea's phylogenetic diversity in southern Tunisia's geothermal water. In the arid southern regions, limited surface freshwater resources make geothermal waters a vital source for oases and greenhouse irrigation. Three samples, including water, sediment, and halite soil crust, were collected downstream of two geothermal springs of the Ksar Ghilane (KGH) and Zaouet Al Aness (ZAN) oases, Tunisia. The samples were subjected to 16S rRNA gene sequencing using the Illumina Miseq sequencing approach. Several haloarchaea were identified in the geothermal springs. The average taxonomic composition revealed that 20 out of 33 genera were shared between the two geothermal sources, with uneven distribution, where the Halogranum genus was the most represented genus with an abundance of 18.9% and 11.58% for ZAW and KGH, respectively. Several unique site-specific genera were observed: Halonotius, Halopelagius, Natronorubrum, and Haloarcula in ZAN, and Haloprofundus, Halomarina, Halovivax, Haloplanus, Natrinema, Halobium, Natronoarchaeum, and Haloterrigena in the KGH pool. Most genus members are typically found in low-salinity ecosystems. These findings suggest that haloarchaea can disperse downstream from geothermal sources and may survive temperature and chemical fluctuations in the runoff.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.