Eco-Friendly Synthesis of Silver Nanoparticles using Lignin Peroxidase Produced from Caldibacillus thermoamylovorans and Cultivated on Waste Walnut Shell.
Sefa Nur Akkaya, Ammar Almansour, Mehmet Akif Omeroglu, Hayrunnisa Nadaroglu, Ahmet Adiguzel
{"title":"Eco-Friendly Synthesis of Silver Nanoparticles using Lignin Peroxidase Produced from Caldibacillus thermoamylovorans and Cultivated on Waste Walnut Shell.","authors":"Sefa Nur Akkaya, Ammar Almansour, Mehmet Akif Omeroglu, Hayrunnisa Nadaroglu, Ahmet Adiguzel","doi":"10.1093/femsle/fnaf036","DOIUrl":null,"url":null,"abstract":"<p><p>The preparation of silver nanoparticles (AgNPs) via an environmentally friendly green synthesis method represents an ecologically promising alternative. This research aims to develop sustainable and eco-friendly AgNPs using the lignin peroxidase (LiP) enzyme from Caldibacillus thermoamylovorans, cultivated on waste walnut shells, which are rich in lignin, to meet the growing demand for AgNPs. Among thermophilic bacteria that were isolated, the Caldibacillus thermoamylovorans SA1 strain showed the highest LiP activity. The production of LiP was optimized by adding waste walnut shells and manipulating the environmental parameters. The optimal conditions were determined at 50 g/L shell amount, 96 h, pH 8, 140 rpm, and 60°C. In parallel with the increase in enzyme activity, bacterial growth also increased. As a result of the optimization, the highest enzyme activity value was 435.0 U/mL and bacterial growth was determined to be OD600: 2.09. The extracellular medium obtained from the bacteria grown in walnut shell medium was then added to an AgNO3 solution. Efficient production of AgNPs was achieved by stirring the mixture at 50-60°C for 4 h under optimum conditions. The synthesized AgNPs were characterized using a range of analytical techniques, including UV‒Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The biological efficacy of the synthesized AgNPs was evaluated by assessing their antibacterial activity against pathogenic bacteria, such as Escherichia coli O157:H7, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Bacillus cereus. The highest activity was observed against B. cereus (15 mm). The broad-spectrum antibacterial properties exhibited by the AgNPs synthesized in this study offer a promising and sustainable solution for diverse applications in various sectors, including the environmental, agricultural, medical, and pharmaceutical fields.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The preparation of silver nanoparticles (AgNPs) via an environmentally friendly green synthesis method represents an ecologically promising alternative. This research aims to develop sustainable and eco-friendly AgNPs using the lignin peroxidase (LiP) enzyme from Caldibacillus thermoamylovorans, cultivated on waste walnut shells, which are rich in lignin, to meet the growing demand for AgNPs. Among thermophilic bacteria that were isolated, the Caldibacillus thermoamylovorans SA1 strain showed the highest LiP activity. The production of LiP was optimized by adding waste walnut shells and manipulating the environmental parameters. The optimal conditions were determined at 50 g/L shell amount, 96 h, pH 8, 140 rpm, and 60°C. In parallel with the increase in enzyme activity, bacterial growth also increased. As a result of the optimization, the highest enzyme activity value was 435.0 U/mL and bacterial growth was determined to be OD600: 2.09. The extracellular medium obtained from the bacteria grown in walnut shell medium was then added to an AgNO3 solution. Efficient production of AgNPs was achieved by stirring the mixture at 50-60°C for 4 h under optimum conditions. The synthesized AgNPs were characterized using a range of analytical techniques, including UV‒Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The biological efficacy of the synthesized AgNPs was evaluated by assessing their antibacterial activity against pathogenic bacteria, such as Escherichia coli O157:H7, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Bacillus cereus. The highest activity was observed against B. cereus (15 mm). The broad-spectrum antibacterial properties exhibited by the AgNPs synthesized in this study offer a promising and sustainable solution for diverse applications in various sectors, including the environmental, agricultural, medical, and pharmaceutical fields.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.