Chasen D Griffin, Joshua Schreiber, Abigail Bierwert, Kacie Kajihara, Danya Weber, Matthew C I Medeiros
{"title":"Integrating network analysis with in vivo-in situ manipulation to elucidate microbiome dynamics in Aedes albopictus.","authors":"Chasen D Griffin, Joshua Schreiber, Abigail Bierwert, Kacie Kajihara, Danya Weber, Matthew C I Medeiros","doi":"10.1093/femsle/fnaf084","DOIUrl":null,"url":null,"abstract":"<p><p>Host-associated microbiomes have significant impacts on host biology and physiology, but the underlying processes governing their structure and assembly are not well understood. One approach to better understanding those process is the use of computationally driven modeling tools, such as network analysis to identify patterns of cooccurring taxa across microbiomes. Those patterns can then be tested to identify taxa that are potentially more important in the overall structuring and assembly processes. Here, we used network analysis to explore cooccurrence patterns within the microbiome of Aedes albopictus. We identified important nodes in the network using the centrality metrics of node degree and betweenness. Among the nodes with the highest centrality values, more ITS ASVs were present than 16S ASVs. We then tested the network analysis predictions in vivo/in situ in A. albopictus. A series of exclusion experiments were used to manipulate environmental microbiome source pools by filtering the source pool by cell size. Our results show that including microbial eukaryotes, such as fungi, in the source pool affects microbiome assembly and structure in A. albopictus, which aligns with the network analyses predictions of this system. To our knowledge, this is the first study to integrate microbial network centrality analysis with in vivo/in situ validation using filtration-based microbial community exclusion.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf084","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Host-associated microbiomes have significant impacts on host biology and physiology, but the underlying processes governing their structure and assembly are not well understood. One approach to better understanding those process is the use of computationally driven modeling tools, such as network analysis to identify patterns of cooccurring taxa across microbiomes. Those patterns can then be tested to identify taxa that are potentially more important in the overall structuring and assembly processes. Here, we used network analysis to explore cooccurrence patterns within the microbiome of Aedes albopictus. We identified important nodes in the network using the centrality metrics of node degree and betweenness. Among the nodes with the highest centrality values, more ITS ASVs were present than 16S ASVs. We then tested the network analysis predictions in vivo/in situ in A. albopictus. A series of exclusion experiments were used to manipulate environmental microbiome source pools by filtering the source pool by cell size. Our results show that including microbial eukaryotes, such as fungi, in the source pool affects microbiome assembly and structure in A. albopictus, which aligns with the network analyses predictions of this system. To our knowledge, this is the first study to integrate microbial network centrality analysis with in vivo/in situ validation using filtration-based microbial community exclusion.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.