Zhiying Guo , Jie Liu , Luyuan Sun , Xiaodan Cui , Guiping Ye , Jia Liu , Xianzhang Pan , Yongxin Lin
{"title":"Soil texture contributes to shaping comammox Nitrospira communities in rice-wheat rotation soils","authors":"Zhiying Guo , Jie Liu , Luyuan Sun , Xiaodan Cui , Guiping Ye , Jia Liu , Xianzhang Pan , Yongxin Lin","doi":"10.1016/j.ejsobi.2024.103661","DOIUrl":"10.1016/j.ejsobi.2024.103661","url":null,"abstract":"<div><p>Complete ammonia oxidizers (comammox <em>Nitrospira</em>) are intriguing discoveries that mark a significant milestone in the global nitrogen cycle. While numerous soil physiochemical variables have been identified as key influencers of comammox <em>Nitrospira</em> distribution, the role of soil texture in shaping these communities remains largely uncertain. Here, we explored the diversity, community structure of comammox <em>Nitrospira</em>, and their driving factors, including soil texture in 237 rice-wheat rotation soils. The results indicated that soil pH and texture were the primary factors influencing the Shannon diversity and richness of comammox <em>Nitrospira</em>. Comammox <em>Nitrospira</em> Shannon diversity and richness were positively associated with soil pH and silt content, but negatively correlated with clay content, suggesting that finer-textured soils harbored lower comammox <em>Nitrospira</em> diversity. Additionally, silt content emerged as the second most influential factor, after pH, shaping comammox <em>Nitrospira</em> community structure. Clade A.2 was found as the predominant comammox <em>Nitrospira</em> clade in rice-wheat rotation soils, representing 59.3 % of the total sequences. Clade A.2 exhibited a positive correlation with sand and clay contents but a negative association with silt content. Conversely, Clades A.3 and B demonstrated the opposite pattern. Overall, our study underscores the critical role of soil texture as a mediator of comammox <em>Nitrospira</em> diversity and community structure, emphasizing the need to consider soil texture in investigations of comammox <em>Nitrospira</em>.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103661"},"PeriodicalIF":3.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141954204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Li , Shengzhao Wei , Hongna Wang , Enwei Zhang , Xingwu Duan
{"title":"Responses of soil microbial biomass carbon and microbial entropy to soil properties in typical sloping croplands of China under erosion conditions","authors":"Yuan Li , Shengzhao Wei , Hongna Wang , Enwei Zhang , Xingwu Duan","doi":"10.1016/j.ejsobi.2024.103660","DOIUrl":"10.1016/j.ejsobi.2024.103660","url":null,"abstract":"<div><p>Soil microbial biomass carbon (MBC) and microbial entropy play a crucial role in the carbon cycle of terrestrial ecosystems, while their responses to soil properties in typical sloping croplands under the impact of soil erosion remain poorly understood due to the complexity of the soil erosion process. In this study, we selected typical sloping croplands with different erosion levels for the four severely eroded soil types (black, loess, purple, and red soil) in China to assess the key controls of MBC and microbial entropy under the influence of soil erosion. The results showed that soil erosion significantly reduced the MBC content but increased the microbial entropy of sloping croplands in black soil region (BS) (22 %, 43.6 %), purple soil region (PS) (25.5 %, 26.2 %) and red soil region (RS) (28.9 %, 21.9 %), but not in loess soil region (LS). The soil physicochemical properties had significantly positive and negative correlations on the MBC and microbial entropy, respectively. The MBC and microbial entropy of these sloping croplands had different dominant drivers under soil erosion. Overall, our results revealed that changes in MBC and microbial entropy directly depended on the fundamental properties of the soil and soil erosion could indirectly affect the MBC and microbial entropy by directly affecting the physicochemical properties of soil. Thus, the impact of soil erosion on sloping croplands and the associated responses following changes in MBC and microbial entropy provide fresh insights into predicting the effects of soil erosion on carbon stability.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103660"},"PeriodicalIF":3.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141954203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhipeng Yu , Hongyan Wang , Yongzhe Zhu , Hongrui Zhao , Meiqi Xin , Yan Sun
{"title":"Biochar and wood vinegar amendments influence the potential nitrification rate and nitrifier communities in high pH sodic saline soils","authors":"Zhipeng Yu , Hongyan Wang , Yongzhe Zhu , Hongrui Zhao , Meiqi Xin , Yan Sun","doi":"10.1016/j.ejsobi.2024.103658","DOIUrl":"10.1016/j.ejsobi.2024.103658","url":null,"abstract":"<div><p>Nitrifiers are the key player in the nitrogen cycle of agroecosystems, yet less research has focused on their performance and response in saline ecosystems. In this study, we carried out potting experiments with biochar and wood vinegar as saline soil amendments under rice cultivation conditions with four different treatments: without biochar or wood vinegar (CK), biochar (BC), wood vinegar (WV), and biochar + wood vinegar (BC + WV). The results showed that the addition of biochar and/or wood vinegar decreased the soil pH and electrical conductivity (EC), which led to an increase in the gene abundance of ammonia-oxidizing bacteria (AOB), thereby benefiting the advancement of the potential nitrification rate (PNR). WV and BC + WV significantly increased the gene abundance of <em>Nitrospira</em>. In addition, the addition of biochar and wood vinegar altered the community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), while the NH<sub>4</sub><sup>+</sup>-N content was the key factor affecting the nitrifier communities. Compared to the CK group, biochar and/or wood vinegar significantly increased the relative abundance of <em>Nitrosospira</em> cluster 3 b in AOB and unknown affiliation in nitrite-oxidizing bacteria (NOB). Overall, the abundance and community composition of AOB contributed more to the PNR than those of AOA, while NOB played a pivotal role in the potential nitrite oxidation (PNO) rate in sodic saline soils. In conclusion, the addition of biochar with wood vinegar had positive effect on improving sodic saline soils by improving the physicochemical properties of the soils, increasing the abundance of nitrifier and changing the community structure of nitrifier. Exploration of the key drivers of soil nitrifier processes is potentially useful for understanding the biological potential of nutrient cycling, providing novel insight into the effects of human intervention and soil management.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103658"},"PeriodicalIF":3.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huirong Zhang , Hongguang Cheng , Fang Zhang , Shiqing Peng , Yanjin Shi , Chaobin Luo , Xueping Tian , Zhenhong Wang , Dan Xing
{"title":"Increased nitrogen accumulation in mulberry trees due to the secretion of glomalin-related soil protein induced by arbuscular mycorrhizal fungi","authors":"Huirong Zhang , Hongguang Cheng , Fang Zhang , Shiqing Peng , Yanjin Shi , Chaobin Luo , Xueping Tian , Zhenhong Wang , Dan Xing","doi":"10.1016/j.ejsobi.2024.103659","DOIUrl":"10.1016/j.ejsobi.2024.103659","url":null,"abstract":"<div><p>In the initial stages of restoring areas affected by rocky desertification, plant survival is strongly influenced by nitrogen nutrition. Mycorrhization is a unique type of inter-root engineering that improves nitrogen acquisition efficiency by plant roots. We selected potted mulberry trees inoculated, two dominant arbuscular mycorrhizal fungi (AMF) with <em>Funneliformis mosseae</em> (Fm) and <em>Rhizophagus intraradices</em> (Ri), to clarify the effects of AMF on the root nitrogen content of mulberry trees. Meanwhile, the key factors of soil nitrogen changes caused by AMF were analyzed, based on the primary role of soil nitrogen as the source of root nitrogen. Simultaneously, the potential of AMF to promote the acquisition of different forms of nitrogen by mulberry roots was investigated. Our findings indicate that the inoculation of mulberry plants with Fm and Ri, improved plant height and increased nitrogen accumulation in the roots and shoots. Additionally, AMF regulates nitrogen transformation, significantly increasing soil nitrate nitrogen (NO<sub>3</sub><sup>−</sup>-N) and dissolved organic nitrogen (DON) levels. The results indicated that soil NH<sub>4</sub><sup>+</sup>-N, NO<sub>3</sub><sup>−</sup>-N, and DON contributed to the observed changes in root nitrogen accumulation. The largest contribution (22.0 %) to the overall effect size was made by NO<sub>3</sub><sup>−</sup>-N. AMF stimulated soil microbial activity and significantly increased soil glomalin-related soil protein (GRSP), enzyme activity, and soil microbial biomass (SMB). Urease activity and microbial biomass carbon (MBC) both increased exponentially by 118.7 % and 115.2 %, respectively. Higher GRSP, enzyme activity, and SMB were positively correlated with changes in soil nitrogen patterns, and GRSP had the most significant effect on changes in the soil nitrogen dynamics. Our study confirmed that inoculation with AMF not only regulates soil nitrogen dynamics but also diversifies plant nitrogen sources. This is achieved by increasing plant growth and enhancing soil microbial activity. Ultimately, this enhances plant root nitrogen nutrition. Therefore, AMF promote root nitrogen accumulation and enhance root nitrogen uptake through GRSP-regulated soil nitrogen, providing a theoretical basis for the management of rocky desertification.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103659"},"PeriodicalIF":3.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriella Jorge-Escudero , Andrés Ligrone , Jan Lagerlöf , Claudio Martínez , Mónica Cadenazzi , Carlos A. Pérez
{"title":"Land use effect on dominance of native and exotic earthworm species in two contrasting rural landscapes","authors":"Gabriella Jorge-Escudero , Andrés Ligrone , Jan Lagerlöf , Claudio Martínez , Mónica Cadenazzi , Carlos A. Pérez","doi":"10.1016/j.ejsobi.2024.103618","DOIUrl":"10.1016/j.ejsobi.2024.103618","url":null,"abstract":"<div><p>Lumbricids and several species of the genus <em>Amynthas</em> have spread over all continents and seem to be better competitors than natives in disturbed ecosystems and agricultural fields. More than half of Uruguay's 19 earthworm species recorded by 2014 are exotic. Aiming to contribute to the scarce information on earthworm ecology in the region, the objectives of this work were 1) to characterize the earthworm communities in agriculture and natural ecosystems, and 2) to assess the relationship between land use and richness of native and exotic earthworm species. Related to the latter objective, we hypothesized that the difference in the number of exotic and native species depended on the degree of disturbance, and predicted that exotic species would dominate in more disturbed soils. We sampled organic and nonorganic agricultural fields including wheat in the rotations in the South and the North-West of Uruguay. Undisturbed sites, <em>i.e.</em> with no recent agriculture activity, close to each sampling plot served as controls. Analyses were conducted to elucidate whether other variables, besides disturbance and location, could be influencing earthworm community structure and composition. In both locations, exotic species dominated in control plots, i.e. less or non-disturbed land, and were associated to higher N, C and soil porosity. Moreover, in the North-West, natives would dominate in terms of richness in most agriculture plots. The mean body weight was larger in the South, where there were more exotic species, than in the North-West, where there were more native species. Thirteen of the collected species had been reported for Uruguay, the four other species found, were reported for the first time in this paper: <em>Microscolex phosphoreus</em> and <em>Glossodrilus parecis</em> (natives); and <em>Aporrectodea tuberculata</em> and <em>Murchieona minuscula</em> (exotics). Finding four unrecorded species evidences the poor coverage of earthworm sampling in anthropic and natural landscapes of the country.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103618"},"PeriodicalIF":3.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homogeneous earthworm communities in Southern Ontario","authors":"Marie-Eugénie Maggia , Thibaud Decaëns , Karl Cottenie , Dirk Steinke","doi":"10.1016/j.ejsobi.2024.103655","DOIUrl":"10.1016/j.ejsobi.2024.103655","url":null,"abstract":"<div><p>Earthworms are key organisms of soil ecosystems, however, the determinants of the structure and distribution of earthworm communities and their relationships with agricultural practices are not well-studied in Canada. We sampled earthworm communities from four different habitat types along a disturbance gradient: agricultural crop land, forest around crop fields (buffers), recently restored natural grassland, and forests from conservation areas. As most species living in Canada are considered exotic and because of the recent colonization of Canadian soils by mostly European species after the extinction of the native species due to the glaciation of North America during the Pleistocene, we hypothesized that the impact of agricultural practices will be similar to what is observed in Europe: for example, crop habitat showing lowest abundance, richness, and proportion of epigeic and anecic species, due to lesser soil organic matter content and higher soil disturbance. We also hypothesized that important soil variables would be associated with these habitat differences. For each habitat we sampled earthworms using a combination of two methods (quantitative + qualitative) at three replicate sites, for two years between May and July together with important environmental variables. We found lower density and diversity of earthworms in crop habitat and proportionally more epigeic species than expected. Contrary to our predictions, forest-buffer earthworm communities were more similar to crop than to forest habitats, and soil environmental variables could not explain the variations in the spatial distribution of earthworm communities. In fact, our results revealed a more homogeneous distribution of the species diversity across the habitat gradient at local scales in Southern Ontario. This was mainly associated with spatial factors, probably due to historical extinction-colonization events of earthworms in Canada and the high invasive potential of the species currently present.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103655"},"PeriodicalIF":3.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Munyao Mutyambai , Johnstone Mutiso Mutua , Abdul A. Jalloh , Saliou Niassy , Thomas Dubois , Zeyaur Khan , Sevgan Subramanian
{"title":"Push-pull cropping system positively impacts diversity and abundance of springtails (Hexapoda: Collembola) as bioindicators of soil health","authors":"Daniel Munyao Mutyambai , Johnstone Mutiso Mutua , Abdul A. Jalloh , Saliou Niassy , Thomas Dubois , Zeyaur Khan , Sevgan Subramanian","doi":"10.1016/j.ejsobi.2024.103657","DOIUrl":"10.1016/j.ejsobi.2024.103657","url":null,"abstract":"<div><p>Crop cultivation positively or negatively impacts soil biodiversity and associated ecological services. The push-pull technology (PPT), a climate-smart cereal-<em>Desmodium</em> spp.-<em>Brachiaria</em> spp. Companion cropping system, is known for providing nature-based solutions for pest and soil fertility challenges and has been practiced in sub-Saharan smallholder farmer fields for more than two decades. However, the extent to which this cropping system affects soil arthropod biodiversity in general and Collembola in particular is not well known. This study assessed the long-term effects of PPT on soil physicochemical properties, abundance, and diversity of Collembola communities, and soil biological quality (QBS) as indicators of soil health. Soil was collected from five maize monoculture and five push-pull smallholder farmer fields in western Kenya. Soil physicochemical properties were analysed using Walkley-Black and Bouyoucos hygrometer method. Collembola abundance and diversity were assessed following the Berlese funnel extraction method and morphological identification. Soil health was evaluated using a Collembola-based soil biological quality (QBS-c) index. Soil physicochemical properties significantly differed between push-pull and maize monoculture fields, with push-pull soils being less acidic, and having higher quantities of nitrogen and carbon. Compared to monoculture, push-pull soils had significantly higher number and diversity of Collembola, and QBS-c index values. Significant positive correlations were observed between Collembola abundance and soil pH, nitrogen, carbon, phosphorous, and electrical conductivity. This study provides experimental evidence that crop diversification through a push-pull cropping system soil legacies positively impacts Collembola abundance and diversity, serving as bioindicator of healthy soils.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103657"},"PeriodicalIF":3.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriela Illarze , Eiko E. Kuramae , Mariana Illarze , Amabelia del Pino , Pilar Irisarri
{"title":"Dairy effluent applications to a pasture enhance soil fertility and microbial activity without impacting soil bacterial and fungal community composition","authors":"Gabriela Illarze , Eiko E. Kuramae , Mariana Illarze , Amabelia del Pino , Pilar Irisarri","doi":"10.1016/j.ejsobi.2024.103648","DOIUrl":"10.1016/j.ejsobi.2024.103648","url":null,"abstract":"<div><p>Farm dairy effluents (FDE) from washing the milking parlor contain manure, urine, and chemicals and constitute a large amount of wastewater. Applying FDE as soil fertilizers to pastures can enhance forage yield and improve soil nutrient status. Since the dairy industry is increasingly attempting to maximize returns through better utilization of forage with lesser inputs, there is demand for a supply of FDE as fertilizers. Nevertheless, the impact of this practice on soil microbiota remains largely unexplored. It must be studied before large-scale soil disposal to avoid diminishing microbial diversity or enhancing pathogen abundance. This study evaluated the effects of applying lagoon-stored (Lagoon) and raw dairy effluents (Raw) at a rate of 50 kg N ha<sup>−1</sup> in four equal doses, in comparison to urea fertilization, on soil fertility and the activity, abundance, and community structure of soil microbiota. Raw was obtained after solid separation, and Lagoon corresponds to the Raw stationed in a two-lagoon system. Microbial activity was assessed as basal respiration, potentially mineralizable N, potential nitrification activity, and enzymatic activities. The catabolic activity of the microbial community was evaluated using Biolog Ecoplates™. Bacterial and fungal community composition and diversity were analyzed through amplicon sequencing of 16S rRNA and ITS2. The application of FDE benefited soil fertility and microbial activity. Lagoon had the most potent effects on soil available P and extractable K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup> and Ca<sup>2+</sup>. Soil treated with Raw displayed higher microbial activities, such as dehydrogenase, basal respiration, urease, and potentially mineralizable N, than the other treatments. FDE did not significantly alter the microbial composition, abundance, or functional diversity. In conclusion, in this short-term trial, despite changes in soil chemical properties and microbial activity, the composition and diversity of the bacterial and fungal communities remained unaffected by FDE irrigation.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103648"},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pablo F. Jaramillo-López , Jaen Blas Romero , Marcela Sarabia , Simon Fonteyne , Abel Saldivia-Tejeda , Nele Verhulst , Mette Vestergård , John Larsen
{"title":"Non-target effects of pesticide and microbial seed treatments in maize and barley on the resident soil microbiota under conservation agriculture","authors":"Pablo F. Jaramillo-López , Jaen Blas Romero , Marcela Sarabia , Simon Fonteyne , Abel Saldivia-Tejeda , Nele Verhulst , Mette Vestergård , John Larsen","doi":"10.1016/j.ejsobi.2024.103653","DOIUrl":"10.1016/j.ejsobi.2024.103653","url":null,"abstract":"<div><p>In production of cereals like maize (<em>Zea mays</em> L.) and barley (<em>Hordeum vulgare</em> L.), seeds are often treated with pesticides and/or commercial products of plant beneficial microorganisms (PBM) to reduce possible root damage from insect pests and soil borne root diseases. In a field experiment with maize and barley under conservation agriculture, we examined how such seed treatments affected the resident root and soil microbiota. The seed treatments included a pesticide mixture and different commercial products of common PBM based on the biocontrol agents (BCA) <em>Trichoderma harzianum</em> and <em>Metarhizium anisopliae</em> alone and in combination and a mix of plant growth promoting rhizobacteria (PGPR), which were compared to a negative control without seed treatment. Soil and root samples were taken at two and three sampling times during the crop cycles for barley and maize, respectively, to measure root biomass, root colonization with mycorrhizal fungi and pathogens, soil microbial communities at a general taxonomic level using biomarker fatty acids, and ecological guilds of soil nematodes. Root health was monitored with observations of the presence of insect feeding larvae and root disease symptoms, which in general showed healthy roots during the full crop cycle. Overall, most of the root and soil biota variables measured changed during the crop cycle. However, for both crops, the seed treatments had no effects on the soil and root microbiota measured, except in the case of barley root infection with <em>Polymyxa</em> sp., which was reduced by all treatments. In conclusion, the pesticide and PBM seed treatments evaluated in the present study for maize and barley under conservation agriculture, in general, had limited effects on the resident root and soil microbiota. However, future studies should include complementary high-resolution sequencing methods when examining non-target effects of pesticides and microbial inoculants on the root and soil microbiota.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103653"},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aporrectodea caliginosa life history traits are improved by positive earthworm interaction and organic matter addition","authors":"Lucas Petit-dit-Grézériat , Mélina Vallayer , Magali Rault , Céline Pelosi","doi":"10.1016/j.ejsobi.2024.103654","DOIUrl":"10.1016/j.ejsobi.2024.103654","url":null,"abstract":"<div><p>Earthworm species interact with each other in soils, but these interactions are poorly understood. Moreover, these key soil organisms are influenced by abiotic soil components such as organic matter. Here, we investigated the influence of <em>Allolobophora chlorotica</em> and <em>Aporrectodea nocturna</em>, two earthworm species from different ecological categories, on the incorporation of organic matter, reproduction and weight change of the endogeic <em>Aporrectodea caliginosa</em>. Two different types of organic matter i) a compost and ii) a fresh refined organic material, both from green waste, were used. Earthworm parameters were monitored during an 8-weeks laboratory experiment using a vineyard soil in order to identify positive and negative interactions between species. Irrespective of species, earthworms interacted preferentially with smaller particles, more decomposed and with a lower C/N ratio. For an equivalent earthworm biomass, similar amount of green compost was incorporated by <em>A. caliginosa</em> and <em>A. nocturna</em>. However, <em>A. chlorotica</em> did not bury this material. The green compost increased the reproduction rate of <em>A. caliginosa</em> when associated to <em>A. chlorotica.</em> Moreover, the association with the epi-anecic <em>A. nocturna</em> increased the reproduction rate of <em>A. caliginosa</em> with the addition of refined organic matter (fresh material). Furthermore, in both earthworm associations, the weight loss of <em>A. caliginosa</em> was reduced by the addition of green compost to the soil surface. These results highlight the importance of earthworm interactions in maintaining populations, and emphasized the need of field studies to confirm these interactions, particularly in the context of soil fertility where organic amendments are often applied.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103654"},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}