Jiri Holatko , Martin Brtnicky , Antonin Kintl , Tivadar Baltazar , Ondrej Malicek , Adnan Mustafa , Jiri Skladanka , Jiri Kucerik , Saud Alamri , Jan Lochman , Pavel Horky , Daniela Knotova , Martina Zapletalová , Maja Radziemska , Muhammad Naveed , Tomas Vymyslicky , Oldrich Latal , Tereza Hammerschmiedt
{"title":"Effect of alfalfa-grass mixed culture and inoculation with Azotobacter and Rhizobium on soil biological properties and nutrient transformation activities","authors":"Jiri Holatko , Martin Brtnicky , Antonin Kintl , Tivadar Baltazar , Ondrej Malicek , Adnan Mustafa , Jiri Skladanka , Jiri Kucerik , Saud Alamri , Jan Lochman , Pavel Horky , Daniela Knotova , Martina Zapletalová , Maja Radziemska , Muhammad Naveed , Tomas Vymyslicky , Oldrich Latal , Tereza Hammerschmiedt","doi":"10.1016/j.ejsobi.2024.103651","DOIUrl":"10.1016/j.ejsobi.2024.103651","url":null,"abstract":"<div><p>Intercropping alfalfa (<em>Medicago sativa</em>) with grass offers yields equal to or greater than alfalfa monoculture, improves the quality of silaged fodder, and enhances resilience to drought and other stresses. Inoculating either alfalfa monoculture or mixed cultures (with a festucoid hybrid (<em>Festulolium pabulare</em>)) with plant growth-promoting rhizobacteria (PGPR) could potentially enhance plant growth, yield and soil quality. A monoculture of alfalfa and three different mixed cultures of alfalfa and festucoid hybrid at ratios 1:1, 2:1, and 3:1 were sown at a seeding rate of 30 kg·ha<sup>-1</sup> on small-scaled field plots (3 × 10 m). The soil type was Luvisol, either uninoculated or inoculated (⁓10.5 log10 CFUm<sup>-2)</sup> with a commercial PGPR consortium containing (<em>Azotobacter</em>, <em>Sinorhizobium meliloti</em>, <em>Bacillus megatherium</em>). At the end of the trial, mixed soil samples (comprising 8 probes to a depth of 10 cm) were collected, and their biological properties were determined. Mixed cultures of alfalfa with the festucoid hybrid decreased nitrification; urease was lower by 8.5 % (alfalfa:festucoid 1:1), 36.5 % (2:1), and 49.7 % (3:1) compared to alfalfa control. <span>d</span>-glucose-induced respiration was higher by 55.4 % (2:1) and by 23.1 % (3:1), along with a negative trend in the nitrifying <em>Archaea</em> abundance. <em>Nitrososphaeria</em> relative abundance decreased from 4.5 % (1:1) to 9.4 % (3:1) compared to the control. Inoculation indirectly affected nitrogen (N) turnover in the mixed variants by increasing urease (2:1 inoculated 49.1 % over 2:1 uninoculated; 3:1 inoculated 36.5 % over 3:1 uninoculated value) and increased the relative abundance of <em>Nitrososphaeria</em> (alfalfa inoculated 7.3 % and 2:1 inoculated 4.2 % over uninoculated control). Inoculation enhanced phosphatase activity (1:1 inoculated 11.4 %; 2:1 inoculated 21.8 %, 3:1 inoculated 16.2 % over respective uninoculated values), specific soil respiration (alfalfa inoculated 146 %, 1:1 inoculated 192 %, 2:1 inoculated 3 % over uninoculated values), and brought a positive tendency in copiotrophic (<em>Actinobacteria</em>) relative abundance (alfalfa inoculated 10.2 %, 1:1 inoculated 6.1 %, 3:1 inoculated 3.4 % over respective uninoculated values), albeit it decreased fungal biomass. An increased rate of N<sub>2</sub> fixation and N assimilation in variants with high alfalfa: grass ratio decreased nitrification and increased mineralization of specific substrates. Inoculation neither directly enriched the soil with the introduced PGPR taxa nor shifted soil microbial diversity. However, it did prompt tendencies in community composition changes towards a higher proportion of nitrifiers and copiotrophs. Despite multiple changes in the tested experimental variants, no significant effect on the plant biomass of harvested crops was observed during the three years.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103651"},"PeriodicalIF":3.7,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Xiao , Jianglin Zhang , Haoliang Yuan , Xue Xie , Yajie Gao , Yanhong Lu , Yulin Liao , Jun Nie
{"title":"Long-term application of legume green manure improves rhizosphere soil bacterial stability and reduces bulk soil bacterial stability in rice","authors":"Jian Xiao , Jianglin Zhang , Haoliang Yuan , Xue Xie , Yajie Gao , Yanhong Lu , Yulin Liao , Jun Nie","doi":"10.1016/j.ejsobi.2024.103652","DOIUrl":"10.1016/j.ejsobi.2024.103652","url":null,"abstract":"<div><p>Overusing chemical fertilizers (CFs) causes soil degradation, which can be mitigated by partially substituting CFs with green manure. This study investigated the impact of traditional vs. improved fertilization schemes that included Chinese milk vetch (CMV) on soil properties and bacterial communities in rice rhizosphere and bulk soil from plots over 12 years under fertilization. The treatments included the conventional fertilization (CF<sub>100</sub>), CMV (22.5 t ha<sup>−1</sup>) with 100 % CF (CMV + CF<sub>100</sub>), CMV with 80 % CF (CMV + CF<sub>80</sub>), CMV with 60 % CF (CMV + CF<sub>60</sub>), and CMV with 40 % CF (CMV + CF<sub>40</sub>). CMV + CF40 increased the soil organic matter (SOM) content in the rhizosphere (bulk) soil by 38.02 % (37.86 %) compared to CF<sub>100</sub> (<em>P</em> < 0.05). The quality index in bulk soil increased by 5.49%–8.17 % through all CF combined with CMV. The rhizosphere bacterial diversity was 1.11%–2.30 % higher, and richness was 2.87%–4.93 % higher than in bulk soil. In the bulk soil, only the CMV + CF<sub>40</sub> increased the bacterial Shannon by 0.40 %, Ace by 0.84 %, and Chao1 indice by 0.89 %. Relative abundances of Geobacter in bulk soil were by 13.90%–52.27 %, Leptospirillum by 25%–77.12 %, and Desulfobacca by 7.42%–37.85 % higher than in the rhizosphere. The stability of the rhizosphere and bulk soil bacterial communities under the CMV input was predicted by the SOM and available phosphorus contents, as indicated by the degree of bacterial average variation. The CMV + CF<sub>40</sub> was recommended as the optimal alternative rate based on local soil ecological considerations.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103652"},"PeriodicalIF":3.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huaqing Liu , Xiaodong Gao , Changjian Li , Long Ma , Kadambot H.M. Siddique , Xining Zhao
{"title":"Short-term plant mixtures alter soil organic carbon components and microbial network characteristics","authors":"Huaqing Liu , Xiaodong Gao , Changjian Li , Long Ma , Kadambot H.M. Siddique , Xining Zhao","doi":"10.1016/j.ejsobi.2024.103650","DOIUrl":"10.1016/j.ejsobi.2024.103650","url":null,"abstract":"<div><p>Restoring plant diversity is crucial to enhance soil organic carbon (SOC) storage and mitigate biodiversity loss and climate change. However, there is limited understanding of how plant diversity impacts biological SOC components and microbial communities in the short term, impeding informed agricultural management decisions. We conducted controlled experiments with various herbaceous plant mixtures to investigate the short-term effects of plant diversity on SOC components (e.g., amino sugars and lignin phenols) and associated microbial community. While soil physical and chemical properties remained relatively stable over one year, plant diversity significantly increased both microbial-derived and plant-derived carbon contents. The plant-derived carbon of two, three, and four-species mixture treatments was higher than 38 %, 59 %, and 80 %, respectively, compared to that of one species. Similarly, microbial-derived carbon increased by 68 %, 117 %, and 164 % for treatments with two, three, and four species mixtures compared to the one species treatment. While plant species richness did not influence bacterial & fungal diversity and community composition at the phylum level, it did affect community constitution at the genus level. Moreover, plant diversity decreased the total number of edges, the number of negatively related edges, and the mean degree of the fungal co-occurrence network. Hence, our results suggest that plant diversity may alter SOC composition by influencing soil microorganism interactions. The rapid response of organic carbon components to plant diversity could underpin total SOC accumulation in the long term. This study provides novel insights into how plant diversity shapes short-term SOC dynamics by influencing microbial interactions, potentially contributing to long-term SOC accumulation.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103650"},"PeriodicalIF":3.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of organic amendment on earthworm density and biomass in sugarcane fields with different soil pH","authors":"Miwa Arai , Kenta Ikazaki , Yoshifumi Terajima , Toshihiko Anzai , Yukio Minamiya","doi":"10.1016/j.ejsobi.2024.103645","DOIUrl":"10.1016/j.ejsobi.2024.103645","url":null,"abstract":"<div><p>Application of organic amendments to agricultural fields often increases earthworm density and biomass. Soil pH can influence earthworm species composition, density, and biomass. However, the effects of organic amendments on these three characteristics at different soil pH value are not fully understood, especially in tropical agricultural fields. In sugarcane fields on Ishigaki Island, Okinawa Prefecture, Japan, we measured soil properties and earthworm species composition, density, and biomass at three paired sites (with and without filter cake input) in soil with low pH (pH-5 sites; pH < 5.2 without filter cake) and moderate pH (pH-6 sites; pH > 6.0 without filter cake), 12 sites in total. The fields contained <em>Pontoscolex corethrurus</em> (Müller, 1856), <em>Polypheretima elongata</em> (Perrier, 1872), and <em>Dichogaster bolaui</em> (Michaelsen, 1891); <em>P. corethrurus</em> was dominant and mean species richness was 1.2. Filter cake application increased earthworm density and biomass at the pH-5 sites but decreased them at the pH-6 sites. This discrepancy in effect might be due to how pH changed when filter cake was added. At pH near neutral, even a small change in proton content could result in a large change in soil pH. The application of filter cake did not change soil pH at the pH-5 sites, but it significantly decreased soil pH at the pH-6 sites, which might have caused the reduction of earthworm density and biomass. Overall, organic amendment affected soil physicochemical and biological properties over the short term in the subtropics, depending on the prior soil pH. Under certain soil conditions, organic amendment can improve both the physicochemical and biological properties of soil, which could improve soil ecosystem services.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103645"},"PeriodicalIF":3.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“Effects of cropping sequences and rotational grazing on diversity, biomass, density and body mass of earthworms”","authors":"Máximo Alvarez , Andrés Ligrone , Gervasio Piñeiro , Gabriella Jorge-Escudero","doi":"10.1016/j.ejsobi.2024.103647","DOIUrl":"10.1016/j.ejsobi.2024.103647","url":null,"abstract":"<div><p>Earthworms are classified as ecosystem engineers, given their ability to modify resources and habitats for other organisms. However, they are also strongly influenced by the land uses changes. Our study investigated the impact of different agricultural systems (rotational grazing versus continuous grazing ; cropping systems in pasture phase versus crop phase) on earthworm communities (diversity, biomass, density and body mass) in Uruguay, a context that is still poorly documented. We found a total of nine earthworm species. Rotational and continuous grazing systems exhibited similar mean richness (2.67–2.33, respectively), while in the crop phase, the mean richness was 2 points higher than that of the pasture phase (5.67 and 3.67, respectively). The results of the principal component analysis confirmed an overlap between the two grazing systems, rotational and continuous, indicating similarities in earthworm species composition in these systems. On the other hand, the pasture phase showed partial overlap with the grazing systems but the crop phase did not overlap with any of other three land uses. No significant difference was found in biomass in rotational grazing versus continuous grazing and in pasture phase versus crop phase. Earthworm density was significantly higher in rotational grazing compared to continuous grazing and in the crop phase compared to pasture phase. Body mass differences were observed in different land uses or developmental stages, observing in average smaller earthworms in rotational grazing compared to continuous grazing. Co-inertia analysis revealed associations between soil variables and earthworm biomass and body mass. Soil variables, including clay and calcium, strongly correlated with earthworm biomass. This study highlights the complexity of earthworm responses to land use, challenging logical interpretations. Further research is needed to elucidate the nuanced interactions between earthworm communities and environmental variables, providing valuable insights for sustainable land management practices, since both soil and plant health is known to be enhanced by the presence of earthworms.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103647"},"PeriodicalIF":3.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Li , Xiaoyi Xing , Shubin Wang , Rujia Liao , Muhammad Umair Hassan , Muhammad Aamer , Lorenzo Barbanti , Tianwang Wen , Huifang Xu
{"title":"Organic fertilisation enhances network complexity among bacteria, fungi, and protists by improving organic matter and phosphorus in acidic agricultural soils","authors":"Ke Li , Xiaoyi Xing , Shubin Wang , Rujia Liao , Muhammad Umair Hassan , Muhammad Aamer , Lorenzo Barbanti , Tianwang Wen , Huifang Xu","doi":"10.1016/j.ejsobi.2024.103649","DOIUrl":"https://doi.org/10.1016/j.ejsobi.2024.103649","url":null,"abstract":"<div><p>Research has explored the impact of organic fertilisation on improving agroecosystem productivity and resilience, highlighting the significant contributions of protists in addition to bacteria and fungi. However, the interactions among bacteria, fungi and protists in organically fertilised soils remain largely unknown. In this study, soil samples were collected from four long-term fertilisation treatments: no fertilisation (Control), inorganic fertilisation (NPK), organic fertilisation (OM), and combined inorganic and organic fertilisation (NPKOM). The abundance and composition of bacteria, fungi, and protist communities, as well as co-occurrence networks, were analysed under different fertilisation treatments. Our results showed that the total abundance of bacteria, fungi, and protists increased by a minimum of 2.95, 3.47, and 0.66 times, respectively, after organic fertiliser application. Moreover, the application of organic fertilisers significantly altered the structures of soil microbial communities by enriching bacterial Proteobacteria and Actinobacteria, fungal Ascomycota, and protist Conosa. Changes in the total abundance of bacteria, fungi, and protists, and their community structures in soils with organic fertilisers were associated with increases in soil organic carbon and phosphorous. Additionally, microbial networks exhibited greater complexity in organically fertilised soils than in non-organically fertilised soils by possessing higher linkage density. The increased complexity may be attributed to potential interkingdom associations among bacteria, fungi, and protists in high soil organic carbon and phosphorus. These results highlight that the application of organic fertilisers has the potential to enhance the complexity of microbial coexistence in acidic agricultural soils.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103649"},"PeriodicalIF":3.7,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunjuan Liu , Xuelian Wang , Xiangyu Li , Zihui Yang , Ke Dang , Xiangwei Gong , Baili Feng
{"title":"Effects of intercropping on rhizosphere microbial community structure and nutrient limitation in proso millet/mung bean intercropping system","authors":"Chunjuan Liu , Xuelian Wang , Xiangyu Li , Zihui Yang , Ke Dang , Xiangwei Gong , Baili Feng","doi":"10.1016/j.ejsobi.2024.103646","DOIUrl":"https://doi.org/10.1016/j.ejsobi.2024.103646","url":null,"abstract":"<div><p>Soil microbes are important for nutrient cycling and ecosystem functions in diverse farmland systems. Intercropping systems alter the soil microbial community structure and boost metabolic function via biological interactions between species. However, the responses of microbial communities to nutrient limitation under intercropping conditions remain unclear. In this study, intercropping of proso millet and mung bean was used to investigate the microbial community structures and metabolic characteristics of both species rhizospheres. The relationship between microbial communities and nutrient limitation was analyzed using high-throughput sequencing. Compared with single cropping, the potential nitrogen (N) limitation of rhizosphere soil microorganisms of both species was more intense in intercropping. Linear regression analysis of soil nutrients, microbes, and threshold elemental ratios directly supported this finding. The soil microbial community diversity and composition were significantly affected by intercropping. Redundancy analysis revealed that total carbon:total nitrogen (TC:TN) and β–1,4–glucosidase: (β–1,4–N–acetylglucosaminidase + leucine aminopeptidase) (BG: (NAG + LAP)) ratios were key factors influencing bacterial and fungal community structure. Intercropping altered the topological network properties of soil microbial communities; the ecological connectivity of bacterial taxa was tighter than that of fungi. As dominant microbial communities, the increased relative abundance of Proteobacteria in intercropped mung bean and decreased relative abundance of Ascomycota in intercropped proso millet was conducive to regulating microbial metabolic limitations. Our results highlighted the close relationship between microbial communities and nutrient limitation, improving our understanding of the degree of plant–soil interactions from the perspective of microbial metabolism in proso millet/mung bean intercropping system.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103646"},"PeriodicalIF":3.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wildflower strips of 2.5-year-old promote earthworms and enchytraeids (Annelida, Oligochaeta) in arable fields","authors":"C. Pelosi , M. Bertrand , A. Gardarin","doi":"10.1016/j.ejsobi.2024.103644","DOIUrl":"https://doi.org/10.1016/j.ejsobi.2024.103644","url":null,"abstract":"<div><p>In the last 50 years, humans have increased crop yields due to intensive agricultural practices and by homogenizing cultivated lands (e.g., larger and more uniform fields). However, this land management practice has led to serious environmental issues, and now, the importance of heterogeneity and semi-natural landscape elements in production systems is acknowledged. Perennial habitats, such as flower strips, could play a key role in agroecosystem sustainability, but little is known about their effects on earthworm and enchytraeid (Annelida: Oligochaeta) communities. The aim of this study was to assess earthworms and enchytraeids in 2.5-year-old wildflower strips that were sown in the middle of arable fields in northern France. Samples (soil, earthworms and enchytraeids) were collected at ten locations, in flower strips and in adjacent cropped fields. The same number of earthworm species was found in both habitats, but more enchytraeid species were detected in the flower strips than in the adjacent cropped fields. Moreover, the total abundance of earthworms and enchytraeids significantly increased in the flower strips compared with the adjacent cropped fields, by 69 % and 61 %, respectively. Flower strips had a significant positive effect on anecic and endogeic earthworms but not on the abundance of epigeic earthworms, which was highly variable among the samples, although on average, it was seven times greater in the flower strips than in the cropped fields. Although the flower strips were sown only 2.5 years earlier, significant changes were observed in the soil Oligochaeta communities. These findings advocate for sowing flower strips within cultivated land as a source of soil biodiversity in the current changing environment. Considering the positive role of flower strips on biodiversity and particularly on the studied tiny soil engineers, these perennial landscape elements should be more widely considered to support the agroecological transition.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103644"},"PeriodicalIF":3.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1164556324000505/pdfft?md5=ba9b3501f6d1fa58558abdf90eaaca2b&pid=1-s2.0-S1164556324000505-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luyuan Sun , Jie Zhang , Jia Liu , Jiao Zhao , Ting Zhang , Fengyi Han , Zi-Yang He , Yongxin Lin
{"title":"High-rate pig manure substitution enhances comammox Nitrospira abundance and diversity in the Cinnamomum camphora coppice planting soils","authors":"Luyuan Sun , Jie Zhang , Jia Liu , Jiao Zhao , Ting Zhang , Fengyi Han , Zi-Yang He , Yongxin Lin","doi":"10.1016/j.ejsobi.2024.103643","DOIUrl":"https://doi.org/10.1016/j.ejsobi.2024.103643","url":null,"abstract":"<div><p>Comammox <em>Nitrospira</em> represents a groundbreaking discovery in nitrogen cycle research, showcasing its remarking ability for complete ammonia oxidation, which challenges prior conceptions of nitrification. In this study, we examined the response of comammox <em>Nitrospira</em> gene abundance, diversity, and community structure to different rates of pig manure substitution (0 %, 25 %, 50 %, 75 %, and 100 %) in subtropical agroforestry soils. The abundance of ammonia-oxidizing microorganisms was assessed by qPCR, whereas the diversity and structure of comammox <em>Nitrospira</em> were determined by high-throughput sequencing. Our findings revealed that pig manure substitution led to an increase in soil pH, available phosphorus (AP), comammox <em>Nitrospira</em> abundance, and diversity within soils under <em>Cinnamomum camphora</em> coppice planting. Soil pH and AP were the primary factors influencing the diversity and community structure of comammox <em>Nitrospira</em>. Moreover, pig manure substitution significantly influenced the composition of comammox <em>Nitrospira</em>, notably by increasing the relative abundance of clade A.2.1 while reducing that of clade A.2.2. However, pig manure substitution did not exert a significant impact on net nitrification rates, suggesting bacterial relative abundances were more sensitive to manure substitution compared to the underlying biogeochemical processes. Overall, our results offer new insights into the response of comammox <em>Nitrospira</em> to different rates of pig manure substitution in <em>Cinnamomum camphora</em> coppice planting soils, highlighting the pivotal role of soil AP and pH as the key determinants shaping comammox <em>Nitrospira</em> diversity and community structure.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103643"},"PeriodicalIF":3.7,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Ashwood , K.D. Brown , E. Sherlock , A.M. Keith , J. Forster , K.R. Butt
{"title":"Earthworm records and habitat associations in the British Isles","authors":"F. Ashwood , K.D. Brown , E. Sherlock , A.M. Keith , J. Forster , K.R. Butt","doi":"10.1016/j.ejsobi.2024.103642","DOIUrl":"https://doi.org/10.1016/j.ejsobi.2024.103642","url":null,"abstract":"<div><p>The National Earthworm Recording Scheme (NERS) is the most comprehensive national database of earthworm species occurrence records for the British Isles, and possibly for any individual country in the world. Utilising the NERS database, we sought to update the current knowledge of earthworm species occurrences in the UK, Ireland and Channel Islands; identify species-specific habitat and microhabitat associations; reveal any biases and complementarities between amateur naturalist and research-related earthworm record collection; and inform how future earthworm sampling can be better focussed to improve our knowledge of earthworm ecology. We found that the most commonly occurring earthworm species were present in farmland and woodland, and recovered via soil pit sampling, the most common habitat-sampling protocol combinations. However, several earthworm species showed specificity to alternative habitats (such as trees, wetlands, and compost), and association with microhabitat (non-soil) sampling. There were clear disparities between scientific researchers and amateur naturalist recorders in terms of habitat types visited and sampling protocols/microhabitats used in the collection of earthworm records. Most importantly, we found that earthworm species currently considered to be nationally ‘rare’ in the British Isles are significantly associated with the most under-represented habitat-protocol/microhabitat combinations (forest deadwood and other microhabitats, in addition to scrubland, wetland and heathland habitats), and thus may not be rare, only under-sampled. We therefore encourage earthworm researchers and recorders to give greater attention to these situations, to gain new insights into these earthworm species' ecologies and distributions. Finally, we would like to promote the establishment of earthworm recording schemes in other countries, to enable national and global collaborative monitoring of earthworm responses to environmental change.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103642"},"PeriodicalIF":4.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1164556324000487/pdfft?md5=8ecd0eaacb08de217f724b700b41c095&pid=1-s2.0-S1164556324000487-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141423790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}