Yang Liu , Caidi Yang , Xin Fu , Fazhu Zhao , Jun Wang
{"title":"地膜覆盖驱动土壤微生物群落组装过程和网络在不同骨料组分间的变化","authors":"Yang Liu , Caidi Yang , Xin Fu , Fazhu Zhao , Jun Wang","doi":"10.1016/j.ejsobi.2024.103664","DOIUrl":null,"url":null,"abstract":"<div><p>Soil microbial community assembly processes and networks in croplands have been widely explored; however, their dynamics and how they regulate winter wheat yield across distinct soil aggregate fractions under the combined effects of mulching and soil horizons have not been comprehensively understood. Therefore, based on a 9-y field experiment, the responses of soil bacterial and fungal community assembly processes and interkingdom association networks to mulching were specifically investigated at the soil aggregation level. Soil properties and microbial biomass were separated into distinct mulching in the topsoil (0–10 cm), and soil water content was considered the most critical factor. The soil bacterial community was affected mainly by mulching and soil horizon compared with the fungal community in microaggregates (<0.25 mm). Notably, the bacterial community displayed more robust stochastic processes than the fungal one, and microbial interkingdom association networks were more complex and stable in micro-than macroaggregates. Soil potential carbon mineralization, pH, and total nitrogen were the dominant properties regulating winter wheat grain yield in combination with microbial community composition, assembly processes, and networks in each soil aggregate class. Wheat yield decreased under straw mulching and was mainly regulated by bacterial community composition and assembly processes. Thus, this study enhanced our understanding of the regulations for wheat yield, which could facilitate soil microbial community management at the aggregation level for sustainable crop production in mulching conservation agroecosystems.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103664"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mulching drive changes in soil microbial community assembly processes and networks across aggregate fractions\",\"authors\":\"Yang Liu , Caidi Yang , Xin Fu , Fazhu Zhao , Jun Wang\",\"doi\":\"10.1016/j.ejsobi.2024.103664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil microbial community assembly processes and networks in croplands have been widely explored; however, their dynamics and how they regulate winter wheat yield across distinct soil aggregate fractions under the combined effects of mulching and soil horizons have not been comprehensively understood. Therefore, based on a 9-y field experiment, the responses of soil bacterial and fungal community assembly processes and interkingdom association networks to mulching were specifically investigated at the soil aggregation level. Soil properties and microbial biomass were separated into distinct mulching in the topsoil (0–10 cm), and soil water content was considered the most critical factor. The soil bacterial community was affected mainly by mulching and soil horizon compared with the fungal community in microaggregates (<0.25 mm). Notably, the bacterial community displayed more robust stochastic processes than the fungal one, and microbial interkingdom association networks were more complex and stable in micro-than macroaggregates. Soil potential carbon mineralization, pH, and total nitrogen were the dominant properties regulating winter wheat grain yield in combination with microbial community composition, assembly processes, and networks in each soil aggregate class. Wheat yield decreased under straw mulching and was mainly regulated by bacterial community composition and assembly processes. Thus, this study enhanced our understanding of the regulations for wheat yield, which could facilitate soil microbial community management at the aggregation level for sustainable crop production in mulching conservation agroecosystems.</p></div>\",\"PeriodicalId\":12057,\"journal\":{\"name\":\"European Journal of Soil Biology\",\"volume\":\"122 \",\"pages\":\"Article 103664\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1164556324000700\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556324000700","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Mulching drive changes in soil microbial community assembly processes and networks across aggregate fractions
Soil microbial community assembly processes and networks in croplands have been widely explored; however, their dynamics and how they regulate winter wheat yield across distinct soil aggregate fractions under the combined effects of mulching and soil horizons have not been comprehensively understood. Therefore, based on a 9-y field experiment, the responses of soil bacterial and fungal community assembly processes and interkingdom association networks to mulching were specifically investigated at the soil aggregation level. Soil properties and microbial biomass were separated into distinct mulching in the topsoil (0–10 cm), and soil water content was considered the most critical factor. The soil bacterial community was affected mainly by mulching and soil horizon compared with the fungal community in microaggregates (<0.25 mm). Notably, the bacterial community displayed more robust stochastic processes than the fungal one, and microbial interkingdom association networks were more complex and stable in micro-than macroaggregates. Soil potential carbon mineralization, pH, and total nitrogen were the dominant properties regulating winter wheat grain yield in combination with microbial community composition, assembly processes, and networks in each soil aggregate class. Wheat yield decreased under straw mulching and was mainly regulated by bacterial community composition and assembly processes. Thus, this study enhanced our understanding of the regulations for wheat yield, which could facilitate soil microbial community management at the aggregation level for sustainable crop production in mulching conservation agroecosystems.
期刊介绍:
The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.