{"title":"Peak-to-average power ratio reduction of orthogonal frequency division multiplexing signals using improved salp swarm optimization-based partial transmit sequence model","authors":"Vandana Tripathi, Prabhat Patel, Prashant Kumar Jain, Shailja Shukla","doi":"10.4218/etrij.2023-0347","DOIUrl":"https://doi.org/10.4218/etrij.2023-0347","url":null,"abstract":"<p>Several peak-to-average power ratio (PAPR) reduction methods have been used in orthogonal frequency division multiplexing (OFDM) applications. Among the available methods, partial transmit sequence (PTS) is an efficient PAPR reduction method but can be computationally expensive while determining optimal phase factors (OPFs). Therefore, an optimization algorithm, namely, the improved salp swarm optimization algorithm (ISSA), is incorporated with the PTS to reduce the PAPR of the OFDM signals with limited computational cost. The ISSA includes a dynamic weight element and Lévy flight process to improve the global exploration ability of the optimization algorithm and to control the global and local search ability of the population with a better convergence rate. Three evaluation measures, namely, the complementary cumulative distribution function (CCDF), bit error rate (BER), and symbol error rate (SER), demonstrate the efficacy of the PTS-ISSA model, which achieves a lower PAPR of 3.47 dB and is superior to other optimization algorithms using the PTS method.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"256-269"},"PeriodicalIF":1.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0347","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ETRI JournalPub Date : 2025-01-21DOI: 10.4218/etrij.2023-0190
Mardi Hardjianto, Jazi Eko Istiyanto, A. Min Tjoa, Arfa Shaha Syahrulfath, Satriawan Rasyid Purnama, Rifda Hakima Sari, Zaidan Hakim, M. Ridho Fuadin, Nias Ananto
{"title":"A graph neural network model application in point cloud structure for prolonged sitting detection system based on smartphone sensor data","authors":"Mardi Hardjianto, Jazi Eko Istiyanto, A. Min Tjoa, Arfa Shaha Syahrulfath, Satriawan Rasyid Purnama, Rifda Hakima Sari, Zaidan Hakim, M. Ridho Fuadin, Nias Ananto","doi":"10.4218/etrij.2023-0190","DOIUrl":"https://doi.org/10.4218/etrij.2023-0190","url":null,"abstract":"<p>The prolonged sitting inherent in modern work and study environments poses significant health risks, necessitating effective monitoring solutions. Traditional human activity recognition systems often fall short in these contexts owing to their reliance on structured data, which may fail to capture the complexity of human movements or accommodate the often incomplete or unstructured nature of healthcare data. To address this gap, our study introduces a novel application of graph neural networks (GNNs) for detecting prolonged sitting periods using point cloud data from smartphone sensors. Unlike conventional methods, our GNN model excels at processing the unordered, three-dimensional structure of sensor data, enabling more accurate classification of sedentary activities. The effectiveness of our approach is demonstrated by its superior ability to identify sitting, standing, and walking activities—critical for assessing health risks associated with prolonged sitting. By providing real-time activity recognition, our model offers a promising tool for healthcare professionals to mitigate the adverse effects of sedentary behavior.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"290-302"},"PeriodicalIF":1.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ETRI JournalPub Date : 2025-01-05DOI: 10.4218/etrij.2024-0192
Yuxuan Gu, Fengyu Liu, Xiaodi Yi, Lewei Yang, Yunshu Wang
{"title":"Spatial feature recognition and layout method based on improved CenterNet and LSTM frameworks","authors":"Yuxuan Gu, Fengyu Liu, Xiaodi Yi, Lewei Yang, Yunshu Wang","doi":"10.4218/etrij.2024-0192","DOIUrl":"https://doi.org/10.4218/etrij.2024-0192","url":null,"abstract":"<p>Existing spatial feature recognition and layout methods primarily identify spatial components manually, which is time-consuming and inefficient, and the constraint relationship between objects in space can be difficult to observe. Consequently, this study introduces an advanced spatial feature recognition and layout methodology employing enhanced CenterNet and LSTM (Long Short-Term Memory) frameworks, which is bifurcated into two major components—first, HCenterNet-based feature recognition enhances feature extraction through an attention mechanism and feature fusion technology, refining the identification of small targets within complex background areas; second, a GA-BiLSTM (Genetic Algorithm - Bidirectional LSTM)-based spatial layout model uses a bidirectional LSTM network optimized with a genetic algorithm (GA), aimed at fine-tuning the network parameters to yield more accurate spatial layouts. Experiments verified that compared with the CenterNet model, the recognition performance of the proposed HCenterNet-DIoU model improved by 7.44%. Moreover, the GA-BiLSTM model improved the overall layout accuracy by 10.08% compared with the LSTM model. Time cost analysis also confirmed that the proposed model could meet the real-time requirements.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"721-736"},"PeriodicalIF":1.6,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance analysis of wireless-powered cell-free massive multiple-input multiple-output system with spatial correlation in Internet of Things network","authors":"Haiyan Wang, Xinmin Li, Yuan Fang, Xiaoqiang Zhang","doi":"10.4218/etrij.2023-0216","DOIUrl":"https://doi.org/10.4218/etrij.2023-0216","url":null,"abstract":"<p>The massive multiple-input multiple-output (mMIMO) approach is promising for the Internet of Things (IoT) owing to its massive connectivity and high data rate. We introduce a wireless-powered cell-free mMIMO system, in which ground IoT devices transmit pilot and uplink information by harvesting downlink power from multiantenna access points. Considering the spatial correlation, we derive closed-form expressions for the average harvested power with a nonlinear energy-harvesting model per IoT device and achievable data rate according to the random matrix theory. The analytical expressions show that spatial correlation has a negative effect on the data rate owing to the increasing interference power. In contrast, the average received power improves with increasing spatial correlation. Simulation results demonstrate that the derived analytical expressions are consistent with results from the Monte Carlo method.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"208-215"},"PeriodicalIF":1.3,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ETRI JournalPub Date : 2024-12-13DOI: 10.4218/etrij.2024-0066
Hyun-Jae Kim, Sung-Bin Son, Heung-Seon Oh
{"title":"Detection and segmentation framework for defect detection on multi-layer ceramic capacitors","authors":"Hyun-Jae Kim, Sung-Bin Son, Heung-Seon Oh","doi":"10.4218/etrij.2024-0066","DOIUrl":"https://doi.org/10.4218/etrij.2024-0066","url":null,"abstract":"<p>Detecting defective multi-layer ceramic capacitors (MLCCs) during the inspection stage is a crucial production task to effectively manage production yield and maintain quality. However, this task presents two challenges: the necessity of pixel-level segmentation in high-resolution images and unexplored defect patterns. To address these challenges, this paper introduces an MLCC defect-detection framework based on deep learning with an MLCC dataset we constructed and a comprehensive analysis of MLCC images. Our framework employs an object-detection model to identify dielectric regions in input MLCC images, followed by a semantic segmentation model to create dielectric masks for calculating the margin ratio. This approach follows the traditional inspection process but can be performed without specialized personnel. Furthermore, we generated pseudo-defect images using generative adversarial networks to obtain sufficient training data. Experiments demonstrate the effectiveness of our framework, which achieved a defect-detection accuracy of 93.1%, as revealed by an in-depth error analysis.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"685-694"},"PeriodicalIF":1.6,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Network function parallelism configuration with segment routing over IPv6 based on deep reinforcement learning","authors":"Seokwon Jang, Namseok Ko, Yeunwoong Kyung, Haneul Ko, Jaewook Lee, Sangheon Pack","doi":"10.4218/etrij.2023-0511","DOIUrl":"https://doi.org/10.4218/etrij.2023-0511","url":null,"abstract":"<p>Network function parallelism (NFP) has gained attention for processing packets in parallel through service functions arranged in the required service function chain. While parallel processing efficiently reduces the service function chaining (SFC) completion time, it incurs a higher network overhead (e.g., network congestion) to replicate various packets for processing. To reduce the SFC completion time while maintaining a low network overhead, we propose a deep-reinforcement-learning-based NFP algorithm (DeepNFP) that provides an SFC processing policy to determine the sequential or parallel processing of every service function. In DeepNFP, deep reinforcement learning captures the network dynamics and service function conditions and iteratively finds the SFC processing policy in the network environment. Furthermore, an SFC data plane protocol based on segment routing over IPv6 configures and operates the policy in the SFC data network. Evaluation results show that DeepNFP can achieve 46% of the SFC completion time and 66% of the network overhead compared with conventional SFC and NFP, respectively.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"278-289"},"PeriodicalIF":1.3,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ETRI JournalPub Date : 2024-12-11DOI: 10.4218/etrij.2023-0540
Ebrahim Parcham, Mahdi Ilbeygi, Vahid Hajipour, Ali Gharaei, Mahdi Mokhtari, Mostafa Foroutan
{"title":"UP-Net: A multi-head architecture for reading and efficiently segmenting distorted QR codes","authors":"Ebrahim Parcham, Mahdi Ilbeygi, Vahid Hajipour, Ali Gharaei, Mahdi Mokhtari, Mostafa Foroutan","doi":"10.4218/etrij.2023-0540","DOIUrl":"https://doi.org/10.4218/etrij.2023-0540","url":null,"abstract":"<p>Semantic segmentation is essential in machine vision but susceptible to noise and distortions that often appear in real-world images. We propose UPlus-Net (UP-Net), a deep-learning architecture based on the U-Net encoder–decoder architecture. We address the limitations of U-Net by introducing a multi-head architecture in UP-Net to properly handle segmentation challenges. In addition, we evaluate UP-Net for decoding distorted quick-response (QR) codes heavily polluted by noise. Experimental results confirm that UP-Net outperforms existing QR reader mobile applications, highlighting the UP-Net ability to handle challenging images. Unlike existing methods focused solely on QR code reading or segmentation, UP-Net offers a combined solution, efficiently and accurately reading distorted QR codes while performing high-quality semantic segmentation. These unique characteristics render UP-Net promising for applications demanding robust image analysis in challenging environments.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 3","pages":"527-544"},"PeriodicalIF":1.3,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0540","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144503044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ETRI JournalPub Date : 2024-12-08DOI: 10.4218/etrij.2024-0255
Kookjin Kim, Jisoo Shin, Jong-Geun Park, Jung-Tae Kim
{"title":"Performance evaluations of AI-based obfuscated and encrypted malicious script detection with feature optimization","authors":"Kookjin Kim, Jisoo Shin, Jong-Geun Park, Jung-Tae Kim","doi":"10.4218/etrij.2024-0255","DOIUrl":"https://doi.org/10.4218/etrij.2024-0255","url":null,"abstract":"<p>In the digital security environment, the obfuscation and encryption of malicious scripts are primary attack methods used to evade detection. These scripts—easily spread through websites, emails, and file downloads—can be automatically executed on users' systems, posing serious security threats. To overcome the limitations of signature-based detection methods, this study proposed a methodology for real-time detection of obfuscated and encrypted malicious scripts using ML/DL models with feature optimization techniques. The obfuscated script datasets were analyzed to identify the unique characteristics, classified into 16 feature sets, to evaluate the optimal features for the best detection accuracy. Although the detection accuracy of these datasets was < 20%, when tested with commercial antivirus services, the experimental results using ML and DL models demonstrated that the proposed light gradient boosting model (LGBM) could achieve the best detection accuracy and processing speed. The LGBM outperformed other artificial intelligence models by achieving 97% accuracy and the minimum processing time in the decoded, obfuscated, and encrypted dataset cases.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"753-770"},"PeriodicalIF":1.6,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ETRI JournalPub Date : 2024-12-08DOI: 10.4218/etr2.12748
Jeman Park, Misun Yu, Jinse Kwon, Junmo Park, Jemin Lee, Yongin Kwon
{"title":"Correction to “NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators”","authors":"Jeman Park, Misun Yu, Jinse Kwon, Junmo Park, Jemin Lee, Yongin Kwon","doi":"10.4218/etr2.12748","DOIUrl":"https://doi.org/10.4218/etr2.12748","url":null,"abstract":"<p>NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators</p><p>https://doi.org/10.4218/etrij.2024-0139</p><p>ETRI Journal, Volume 46, Issue 5, October 2024, pp. 851–864.</p><p>In the article entitled “NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators,” the authors would like to correct the funding information of their article. It should be written as follows:</p><p><b>Funding information</b> This study is supported by a grant from the Institute of Information & Communications Technology Planning & Evaluation (IITP), funded by the Korean government (MSIT) (No. RS-2023-00277060, Development of OpenEdge AI SoC hardware and software platform and No. 2018-0-00769, Neuromorphic Computing Software Platform for Artificial Intelligence Systems).</p><p>The authors would like to apologize for the inconvenience caused.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 6","pages":"1126"},"PeriodicalIF":1.3,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etr2.12748","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ETRI JournalPub Date : 2024-11-26DOI: 10.4218/etr2.12746
{"title":"Correction to “Low-complexity patch projection method for efficient and lightweight point-cloud compression”","authors":"","doi":"10.4218/etr2.12746","DOIUrl":"https://doi.org/10.4218/etr2.12746","url":null,"abstract":"<p><b>Sungryeul Rhyu</b> | <b>Junsik Kim | Gwang Hoon Park | Kyuheon Kim</b></p><p>Low-complexity patch projection method for efficient and lightweight point-cloud compression</p><p>https://doi.org/10.4218/etrij.2023-0242</p><p><i>ETRI Journal</i>, Volume 46, Issue 4, August 2024, pp. 683–696.</p><p>In the article entitled “Low-complexity patch projection method for efficient and lightweight point-cloud compression”, the authors would like to correct the funding information of their article. It should be written as follows:</p><p><b>Funding information</b></p><p>This study was supported by the Information Technology Research Center of the Ministry of Science and ICT, Korea (grant number: IITP-2024-2021-0-02046) and the Institute of Information & Communications Technology Planning & Evaluation, Korea (grant number: RS-2023-00227431, Development of 3D space digital media standard technology).</p><p>The authors would like to apologize for the inconvenience caused.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 6","pages":"1125"},"PeriodicalIF":1.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etr2.12746","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}