Yuxuan Gu, Fengyu Liu, Xiaodi Yi, Lewei Yang, Yunshu Wang
{"title":"Spatial feature recognition and layout method based on improved CenterNet and LSTM frameworks","authors":"Yuxuan Gu, Fengyu Liu, Xiaodi Yi, Lewei Yang, Yunshu Wang","doi":"10.4218/etrij.2024-0192","DOIUrl":null,"url":null,"abstract":"<p>Existing spatial feature recognition and layout methods primarily identify spatial components manually, which is time-consuming and inefficient, and the constraint relationship between objects in space can be difficult to observe. Consequently, this study introduces an advanced spatial feature recognition and layout methodology employing enhanced CenterNet and LSTM (Long Short-Term Memory) frameworks, which is bifurcated into two major components—first, HCenterNet-based feature recognition enhances feature extraction through an attention mechanism and feature fusion technology, refining the identification of small targets within complex background areas; second, a GA-BiLSTM (Genetic Algorithm - Bidirectional LSTM)-based spatial layout model uses a bidirectional LSTM network optimized with a genetic algorithm (GA), aimed at fine-tuning the network parameters to yield more accurate spatial layouts. Experiments verified that compared with the CenterNet model, the recognition performance of the proposed HCenterNet-DIoU model improved by 7.44%. Moreover, the GA-BiLSTM model improved the overall layout accuracy by 10.08% compared with the LSTM model. Time cost analysis also confirmed that the proposed model could meet the real-time requirements.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"721-736"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0192","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0192","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Existing spatial feature recognition and layout methods primarily identify spatial components manually, which is time-consuming and inefficient, and the constraint relationship between objects in space can be difficult to observe. Consequently, this study introduces an advanced spatial feature recognition and layout methodology employing enhanced CenterNet and LSTM (Long Short-Term Memory) frameworks, which is bifurcated into two major components—first, HCenterNet-based feature recognition enhances feature extraction through an attention mechanism and feature fusion technology, refining the identification of small targets within complex background areas; second, a GA-BiLSTM (Genetic Algorithm - Bidirectional LSTM)-based spatial layout model uses a bidirectional LSTM network optimized with a genetic algorithm (GA), aimed at fine-tuning the network parameters to yield more accurate spatial layouts. Experiments verified that compared with the CenterNet model, the recognition performance of the proposed HCenterNet-DIoU model improved by 7.44%. Moreover, the GA-BiLSTM model improved the overall layout accuracy by 10.08% compared with the LSTM model. Time cost analysis also confirmed that the proposed model could meet the real-time requirements.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.