Performance analysis of wireless-powered cell-free massive multiple-input multiple-output system with spatial correlation in Internet of Things network
IF 1.3 4区 计算机科学Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Performance analysis of wireless-powered cell-free massive multiple-input multiple-output system with spatial correlation in Internet of Things network","authors":"Haiyan Wang, Xinmin Li, Yuan Fang, Xiaoqiang Zhang","doi":"10.4218/etrij.2023-0216","DOIUrl":null,"url":null,"abstract":"<p>The massive multiple-input multiple-output (mMIMO) approach is promising for the Internet of Things (IoT) owing to its massive connectivity and high data rate. We introduce a wireless-powered cell-free mMIMO system, in which ground IoT devices transmit pilot and uplink information by harvesting downlink power from multiantenna access points. Considering the spatial correlation, we derive closed-form expressions for the average harvested power with a nonlinear energy-harvesting model per IoT device and achievable data rate according to the random matrix theory. The analytical expressions show that spatial correlation has a negative effect on the data rate owing to the increasing interference power. In contrast, the average received power improves with increasing spatial correlation. Simulation results demonstrate that the derived analytical expressions are consistent with results from the Monte Carlo method.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"208-215"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0216","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The massive multiple-input multiple-output (mMIMO) approach is promising for the Internet of Things (IoT) owing to its massive connectivity and high data rate. We introduce a wireless-powered cell-free mMIMO system, in which ground IoT devices transmit pilot and uplink information by harvesting downlink power from multiantenna access points. Considering the spatial correlation, we derive closed-form expressions for the average harvested power with a nonlinear energy-harvesting model per IoT device and achievable data rate according to the random matrix theory. The analytical expressions show that spatial correlation has a negative effect on the data rate owing to the increasing interference power. In contrast, the average received power improves with increasing spatial correlation. Simulation results demonstrate that the derived analytical expressions are consistent with results from the Monte Carlo method.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.