Network function parallelism configuration with segment routing over IPv6 based on deep reinforcement learning

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Seokwon Jang, Namseok Ko, Yeunwoong Kyung, Haneul Ko, Jaewook Lee, Sangheon Pack
{"title":"Network function parallelism configuration with segment routing over IPv6 based on deep reinforcement learning","authors":"Seokwon Jang,&nbsp;Namseok Ko,&nbsp;Yeunwoong Kyung,&nbsp;Haneul Ko,&nbsp;Jaewook Lee,&nbsp;Sangheon Pack","doi":"10.4218/etrij.2023-0511","DOIUrl":null,"url":null,"abstract":"<p>Network function parallelism (NFP) has gained attention for processing packets in parallel through service functions arranged in the required service function chain. While parallel processing efficiently reduces the service function chaining (SFC) completion time, it incurs a higher network overhead (e.g., network congestion) to replicate various packets for processing. To reduce the SFC completion time while maintaining a low network overhead, we propose a deep-reinforcement-learning-based NFP algorithm (DeepNFP) that provides an SFC processing policy to determine the sequential or parallel processing of every service function. In DeepNFP, deep reinforcement learning captures the network dynamics and service function conditions and iteratively finds the SFC processing policy in the network environment. Furthermore, an SFC data plane protocol based on segment routing over IPv6 configures and operates the policy in the SFC data network. Evaluation results show that DeepNFP can achieve 46% of the SFC completion time and 66% of the network overhead compared with conventional SFC and NFP, respectively.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"278-289"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0511","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0511","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Network function parallelism (NFP) has gained attention for processing packets in parallel through service functions arranged in the required service function chain. While parallel processing efficiently reduces the service function chaining (SFC) completion time, it incurs a higher network overhead (e.g., network congestion) to replicate various packets for processing. To reduce the SFC completion time while maintaining a low network overhead, we propose a deep-reinforcement-learning-based NFP algorithm (DeepNFP) that provides an SFC processing policy to determine the sequential or parallel processing of every service function. In DeepNFP, deep reinforcement learning captures the network dynamics and service function conditions and iteratively finds the SFC processing policy in the network environment. Furthermore, an SFC data plane protocol based on segment routing over IPv6 configures and operates the policy in the SFC data network. Evaluation results show that DeepNFP can achieve 46% of the SFC completion time and 66% of the network overhead compared with conventional SFC and NFP, respectively.

Abstract Image

基于深度强化学习的 IPv6 分段路由网络功能并行性配置
网络功能并行化(NFP)通过在所需的服务功能链中排列的服务功能并行处理数据包,因此受到了关注。虽然并行处理能有效缩短服务功能链(SFC)的完成时间,但复制各种数据包进行处理会产生较高的网络开销(如网络拥塞)。为了缩短 SFC 完成时间,同时保持较低的网络开销,我们提出了一种基于深度强化学习的 NFP 算法(DeepNFP),该算法提供一种 SFC 处理策略,以确定每个服务功能的顺序或并行处理。在 DeepNFP 中,深度强化学习捕捉网络动态和服务功能条件,并在网络环境中迭代地找到 SFC 处理策略。此外,基于 IPv6 网段路由的 SFC 数据平面协议可在 SFC 数据网络中配置和运行该策略。评估结果表明,与传统的 SFC 和 NFP 相比,DeepNFP 可分别缩短 46% 的 SFC 完成时间和减少 66% 的网络开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信