Mardi Hardjianto, Jazi Eko Istiyanto, A. Min Tjoa, Arfa Shaha Syahrulfath, Satriawan Rasyid Purnama, Rifda Hakima Sari, Zaidan Hakim, M. Ridho Fuadin, Nias Ananto
{"title":"A graph neural network model application in point cloud structure for prolonged sitting detection system based on smartphone sensor data","authors":"Mardi Hardjianto, Jazi Eko Istiyanto, A. Min Tjoa, Arfa Shaha Syahrulfath, Satriawan Rasyid Purnama, Rifda Hakima Sari, Zaidan Hakim, M. Ridho Fuadin, Nias Ananto","doi":"10.4218/etrij.2023-0190","DOIUrl":null,"url":null,"abstract":"<p>The prolonged sitting inherent in modern work and study environments poses significant health risks, necessitating effective monitoring solutions. Traditional human activity recognition systems often fall short in these contexts owing to their reliance on structured data, which may fail to capture the complexity of human movements or accommodate the often incomplete or unstructured nature of healthcare data. To address this gap, our study introduces a novel application of graph neural networks (GNNs) for detecting prolonged sitting periods using point cloud data from smartphone sensors. Unlike conventional methods, our GNN model excels at processing the unordered, three-dimensional structure of sensor data, enabling more accurate classification of sedentary activities. The effectiveness of our approach is demonstrated by its superior ability to identify sitting, standing, and walking activities—critical for assessing health risks associated with prolonged sitting. By providing real-time activity recognition, our model offers a promising tool for healthcare professionals to mitigate the adverse effects of sedentary behavior.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"290-302"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0190","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0190","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The prolonged sitting inherent in modern work and study environments poses significant health risks, necessitating effective monitoring solutions. Traditional human activity recognition systems often fall short in these contexts owing to their reliance on structured data, which may fail to capture the complexity of human movements or accommodate the often incomplete or unstructured nature of healthcare data. To address this gap, our study introduces a novel application of graph neural networks (GNNs) for detecting prolonged sitting periods using point cloud data from smartphone sensors. Unlike conventional methods, our GNN model excels at processing the unordered, three-dimensional structure of sensor data, enabling more accurate classification of sedentary activities. The effectiveness of our approach is demonstrated by its superior ability to identify sitting, standing, and walking activities—critical for assessing health risks associated with prolonged sitting. By providing real-time activity recognition, our model offers a promising tool for healthcare professionals to mitigate the adverse effects of sedentary behavior.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.