{"title":"Detection and segmentation framework for defect detection on multi-layer ceramic capacitors","authors":"Hyun-Jae Kim, Sung-Bin Son, Heung-Seon Oh","doi":"10.4218/etrij.2024-0066","DOIUrl":null,"url":null,"abstract":"<p>Detecting defective multi-layer ceramic capacitors (MLCCs) during the inspection stage is a crucial production task to effectively manage production yield and maintain quality. However, this task presents two challenges: the necessity of pixel-level segmentation in high-resolution images and unexplored defect patterns. To address these challenges, this paper introduces an MLCC defect-detection framework based on deep learning with an MLCC dataset we constructed and a comprehensive analysis of MLCC images. Our framework employs an object-detection model to identify dielectric regions in input MLCC images, followed by a semantic segmentation model to create dielectric masks for calculating the margin ratio. This approach follows the traditional inspection process but can be performed without specialized personnel. Furthermore, we generated pseudo-defect images using generative adversarial networks to obtain sufficient training data. Experiments demonstrate the effectiveness of our framework, which achieved a defect-detection accuracy of 93.1%, as revealed by an in-depth error analysis.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"685-694"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0066","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting defective multi-layer ceramic capacitors (MLCCs) during the inspection stage is a crucial production task to effectively manage production yield and maintain quality. However, this task presents two challenges: the necessity of pixel-level segmentation in high-resolution images and unexplored defect patterns. To address these challenges, this paper introduces an MLCC defect-detection framework based on deep learning with an MLCC dataset we constructed and a comprehensive analysis of MLCC images. Our framework employs an object-detection model to identify dielectric regions in input MLCC images, followed by a semantic segmentation model to create dielectric masks for calculating the margin ratio. This approach follows the traditional inspection process but can be performed without specialized personnel. Furthermore, we generated pseudo-defect images using generative adversarial networks to obtain sufficient training data. Experiments demonstrate the effectiveness of our framework, which achieved a defect-detection accuracy of 93.1%, as revealed by an in-depth error analysis.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.