ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems最新文献

筛选
英文 中文
High Strain Rate Properties and Evolution of Plastic-Work for Doped Solder SAC-Q for Isothermal Aging Up to 240-Days at 100°C 100°C等温时效高达240天的掺杂焊料SAC-Q的高应变率性能和塑性功演变
P. Lall, V. Mehta, J. Suhling, K. Blecker
{"title":"High Strain Rate Properties and Evolution of Plastic-Work for Doped Solder SAC-Q for Isothermal Aging Up to 240-Days at 100°C","authors":"P. Lall, V. Mehta, J. Suhling, K. Blecker","doi":"10.1115/ipack2022-97438","DOIUrl":"https://doi.org/10.1115/ipack2022-97438","url":null,"abstract":"\u0000 In automotive, aerospace, and defense applications – electronic parts can often be exposed to high strain loads during shocks, vibrations and drop-impact conditions. Electronic parts can often face extreme low and high temperatures ranging from −65°C to 200°C. Additionally, these electronic devices can be subjected to strain rates of 1 to 100 per second in a critical environment. Numerous doped solder alloys have emerged to mitigate the effects of sustained high-temperature operation. The mechanical properties of SAC-Q solder alloy, isothermally aged for prolonged durations and tested at extremely low to high operating temperatures, are not available. In this work, SAC-Q doped solder material is tested and studied for this study at a range of operating temperatures of −65°C to 200°C and at a strain rate up to 75 per second for up to 240 days (i.e. 8 months) of isothermal aging with a storage temperature of 100°C. For the extensive range of strain rates and surrounding test temperatures, stress-strain curves are established for the solder. The measured experimental results and data were fitted to the Anand viscoplasticity model. The Anand constants were calculated by estimating the stress-strain behavior measured for operating temperatures −65°C to 200°C for SAC-Q solder. FE analysis for drop/shock events for BGA package assembly with PCB has been carried out. Hysteresis stress-strain curves and plastic work density curves are generated for various aging conditions for SAC-Q solder ball joints.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125850284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power Density in the Context of Two-Phase Immersion Cooling 两相浸没冷却下的功率密度
Jimil M. Shah, P. Tuma
{"title":"Power Density in the Context of Two-Phase Immersion Cooling","authors":"Jimil M. Shah, P. Tuma","doi":"10.1115/ipack2022-96370","DOIUrl":"https://doi.org/10.1115/ipack2022-96370","url":null,"abstract":"\u0000 Power density has been used to describe the capability of a data center. Achieving harmony between space and power has always been a challenge for data center administrators. Studies demonstrate when the average power density is above 7kW per rack, the space utilization by IT equipment drops to almost 50% of the total white space (the area dedicated to IT equipment and infrastructure). The remaining space is occupied by the cooling equipment required for optimal operation of the housed IT equipment in the racks. With the increasing use of deep learning and artificial intelligence, the different cooling methods like air cooling, cold plate cooling and single-phase immersion cooling are reaching their limits and require more white space. The improved efficiency of the two-phase immersion cooling technique may offer simplicity in facility design compared to traditional cooling and provide a means for cost savings. Submerging servers and IT equipment in a dielectric liquid enables substantial energy savings today and accommodates growing load densities for future facilities. This paper is a first attempt at addressing the overview of power density from the two-phase immersion cooling perspective. The paper compares the dedicated space requirement for air cooling with immersion cooling at higher densities. At 3kW/m2, a typical air-cooled data center floor space density, the actual electronics in a typical data center would fill only the bottom 5mm of the building which is often several stories tall. The P2PIC can increase floor space density 6 times or more while simplifying server design and reducing facility capital and operating costs. At higher densities, the cost of fluid per cost of electronics becomes negligible.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123772569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pool Boiling Heat Transfer in Dielectric Fluids and Impact of Surfaces on the Repeatability 介质池沸腾换热及表面对可重复性的影响
Tolga Emir, Yakup Yazıcı, M. Budakli, M. Arik
{"title":"Pool Boiling Heat Transfer in Dielectric Fluids and Impact of Surfaces on the Repeatability","authors":"Tolga Emir, Yakup Yazıcı, M. Budakli, M. Arik","doi":"10.1115/ipack2022-97266","DOIUrl":"https://doi.org/10.1115/ipack2022-97266","url":null,"abstract":"\u0000 This study presents an experimental investigation on the nucleate boiling heat transfer (NBHT) in deionized (DI) water and HFE-7100 on bare copper surfaces. The experiments were performed under atmospheric condition at 0 and 10 K subcooling levels. The primary objective was to understand the effect of fluid property on critical heat flux (CHF) and heat transfer performance, where the occurrence of surface oxidation over the entire set of experiments were investigated for a range of operating conditions. In order to determine the onset and development of the latter phenomenon, experiments for the complete boiling process have been repeated three times under similar conditions. A detailed visualization study with a high-speed camera has been utilized to capture the dynamics of bubble formation and departure. Additionally, high-resolution microscopic images were captured, and contact angle measurements were used to express the experimental results conveniently. Microscopic images showed that using DI water leads to an intensified oxidization on the heater surface, while HFE-7100 yields a minor occurrence of oxide layer on the copper surfaces. The results indicated that CHF values remain constant for water at 0 K; however, a remarkable increase was observed for 10 K subcooling from the first to third run of successive measurements.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124165151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Characterization and Reliability Analysis of Direct-Write Additively Printed Flexible Humidity Sensor With Super Capacitive Material for Wearable Astronaut Sensor in Harsh Environments 恶劣环境下可穿戴航天员传感器用超电容材料直写加印柔性湿度传感器特性及可靠性分析
P. Lall, Hye-Yoen Jang, C. Hill
{"title":"Characterization and Reliability Analysis of Direct-Write Additively Printed Flexible Humidity Sensor With Super Capacitive Material for Wearable Astronaut Sensor in Harsh Environments","authors":"P. Lall, Hye-Yoen Jang, C. Hill","doi":"10.1115/ipack2022-97432","DOIUrl":"https://doi.org/10.1115/ipack2022-97432","url":null,"abstract":"\u0000 Using additive technologies to fabricate printed circuit boards eliminates the need for expensive manufacturing - software-based design and production permit production flexibility, as well as quicker tool modifications and design evolution. In addition, additive printing techniques can be applied to various surfaces and shapes. This adaptability to a wide range of applications enables the construction of novel applications, such as biosensors, by designers. Several previous studies have focused on developing additively printed humidity sensors because of their potential for flexibility and integration. Flexure in the operating environment has been known to cause performance degradation in prior generations of temperature and humidity sensor technologies. This study uses the direct write printing method with a nScrypt printer to print the humidity sensor. Characterization of the sensor has been done by studying the process-performance interactions of temperature coefficient to resistance and sensitivity to humidity. Sensor accuracy, hysteresis, repeatability, linearity, and stability have been quantified concerning printing recipe and encapsulation. A folding reliability test has been conducted to assess the viability of the sensor in operation to mimic real-life use conditions. The cyclic folding motions are administered every 13 seconds with the same folding diameter and travel distance on every three samples, with single trace and multi-trace sensing materials and trace with polyimide encapsulation. Furthermore, chemo-electrical measurement with cyclic voltammetry method has been conducted to assess water possession under high humidity conditions. It is found that encapsulation might help improve the humid and mechanical reliability of the additively printed humidity sensor.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127725662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Control Strategy for Minimizing Temperature Fluctuations in High Power Liquid to Liquid CDUs Operated at Very Low Heat Loads 在极低热负荷下运行的大功率液对液cdu温度波动最小化的控制策略
A. Heydari, Pardeep Shahi, Vahideh Radmard, Bahareh Eslami, Uschas Chowdhury, Chandraprakash Hinge, Lochan Sai Reddy Cinthaparthy, Harold Miyamura, Himanshu Modi, D. Agonafer, Jeremy Rodriguez
{"title":"A Control Strategy for Minimizing Temperature Fluctuations in High Power Liquid to Liquid CDUs Operated at Very Low Heat Loads","authors":"A. Heydari, Pardeep Shahi, Vahideh Radmard, Bahareh Eslami, Uschas Chowdhury, Chandraprakash Hinge, Lochan Sai Reddy Cinthaparthy, Harold Miyamura, Himanshu Modi, D. Agonafer, Jeremy Rodriguez","doi":"10.1115/ipack2022-97434","DOIUrl":"https://doi.org/10.1115/ipack2022-97434","url":null,"abstract":"\u0000 The rising demand for high-performance central and graphical processing units has resulted in the need for more efficient thermal management techniques like direct-to-chip liquid cooling. Direct Liquid Cooling using cold plates is one of the most efficient and investigated cooling technologies since the 1980s. Major data and cloud providers are actively deploying liquid-cooled data center infrastructure due to rising computational demands. Liquid to liquid heat exchangers used in liquid-cooled data centers is also referred to as coolant distribution units (CDUs). Most of these CDUs selected by the data center operator is based on the heat load of the data center and the available head with that CDU. In this study, three 52U racks with six high-power TTV-based servers (Thermal Test Vehicles) in each rack were designed and deployed. Each server consists of eight GPU TTVs and six NV switch heaters. A 450-kW liquid-cooled CDU is used, and propylene glycol 25% is used as a coolant. Typical CDUs are designed to operate at 20 to 30% of the rated heat load to achieve a stable secondary coolant supply temperature. The present study will investigate the operations of CDU at very low heat loads, like 1% to 10% of the CDU’s rated capacity. At these low loads, large fluctuations in secondary side supply temperature were observed. This large fluctuation can lead to the failure of the 3-way valve used in CDUs at the primary side. In this paper, a control strategy is developed to stabilize the secondary supply temperature within ± 0.5 °C at very low loads using the combination of a flow control valve on the primary side and PID control settings within the CDU.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126266611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dual-Evaporator Thermosyphon Cooling System for Electronics Cooling 电子冷却用双蒸发器热虹吸冷却系统
Filippo Cataldo, R. L. Amalfi
{"title":"Dual-Evaporator Thermosyphon Cooling System for Electronics Cooling","authors":"Filippo Cataldo, R. L. Amalfi","doi":"10.1115/ipack2022-97729","DOIUrl":"https://doi.org/10.1115/ipack2022-97729","url":null,"abstract":"\u0000 When dealing with thermosyphon systems for electronics cooling, there is a dearth of experimental studies addressing the physics of having multiple evaporators in parallel. Indeed, it is very common to have several processing units on the same device, such as the Central Processing Units (CPUs) and Graphics Processing Units (GPUs) on desktop computers or servers. In this study, a thermosyphon-based system composed of two evaporators and a single air-cooled condenser is designed and tested for the layout typical of a desktop computer, workstation, or crypto-currency miner. Two evaporators at different heights and orientations compose the loo: the vertical evaporator occupies the highest position, while the evaporator is horizontal and located at the bottom of the loop. The total power dissipation of the thermosyphon-based system is 880 W when both the vertical and horizontal evaporators were cooling the corresponding units. The results show that the thermosyphon can effectively cool both processing units without instabilities. Moreover, the thermosyphon system can operate safely even when one of the two evaporators is not working.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"15 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120929889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Machine Learning-Based Heat Sink Optimization Model for Single-Phase Immersion Cooling 基于机器学习的单相浸没冷却散热器优化模型
Joseph Herring, Peter Smith, Jacob Lamotte-Dawaghreh, Pratik V. Bansode, S. Saini, Rabin Bhandari, D. Agonafer
{"title":"Machine Learning-Based Heat Sink Optimization Model for Single-Phase Immersion Cooling","authors":"Joseph Herring, Peter Smith, Jacob Lamotte-Dawaghreh, Pratik V. Bansode, S. Saini, Rabin Bhandari, D. Agonafer","doi":"10.1115/ipack2022-97481","DOIUrl":"https://doi.org/10.1115/ipack2022-97481","url":null,"abstract":"\u0000 Traditional air-cooling along with corresponding heat sinks are beginning to reach performance limits, requiring lower air-supply temperatures and higher air-supply flowrates, in order to meet the rising thermal management requirements of high power-density electronics. A switch from air-cooling to single-phase immersion cooling provides significant thermal performance improvement and reliability benefits. When hardware which is designed for air-cooling is implemented within a single-phase immersion cooling regime, optimization of the heat sinks provides additional thermal performance improvements. In this study, we investigate the performance of a machine learning (ML) approach to building a predictive model of the multi-objective and multi-design variable optimization of an air-cooled heat sink for single-phase immersion-cooled servers. Parametric simulations via high fidelity CFD numerical simulations are conducted by considering the following design variables composed of both geometric and material properties for both forced and natural convection: fin height, fin thickness, number of fins, and thermal conductivity of the heat sink. Generating a databank of 864 points through CFD numerical optimization simulations, the data set is used to train and evaluate the machine learning algorithms’ ability to predict heat sink thermal resistance and pressure drop across the heat sink. Three machine learning regression models are studied to evaluate and compare the performance of polynomial regression, random forest, and neural network to accurately predict heat sink thermal resistance and pressure drop as a function of various design inputs. This approach to utilizing numerical simulations for building a databank for machine learning predictive models can be extrapolated to thermal performance prediction and parameter optimization in other electronic thermal management applications and thus reducing the design lead time significantly.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120963772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modeling and Experimental Validation on Non-Contact Bernoulli Picker for 3D Device Stacking Process 非接触式伯努利拾取器三维器件堆积过程的数值模拟与实验验证
D. Min, M. Han, Juno Kim, Kangsan Lee, K. Lim, Euisun Choi, Seungdae Seok, Byeongjun Lee, M. Rhee
{"title":"Numerical Modeling and Experimental Validation on Non-Contact Bernoulli Picker for 3D Device Stacking Process","authors":"D. Min, M. Han, Juno Kim, Kangsan Lee, K. Lim, Euisun Choi, Seungdae Seok, Byeongjun Lee, M. Rhee","doi":"10.1115/ipack2022-97218","DOIUrl":"https://doi.org/10.1115/ipack2022-97218","url":null,"abstract":"\u0000 This paper focuses on numerical computation and experimental examination of Bernoulli picker, which is the essential module for the 3D stacking process for heterogeneous integration devices, to reveal the fundamental physics of non-contact die handling and to seek optimized design. We estimated the pick-up performance of the Bernoulli picker and the deformation of the die using pseudo-coupling of flow and structural analysis. We simulated the flow field around the target die and picker using the RANS equation with the k-w SST turbulence model to predict the levitation height between the picker surface and target die. Then we estimated the deformation of the die using the inertial relief approach of ABAQUS with computed pressure field information. Based on the numerical investigations, we made a prototype of a Bernoulli picker and conducted experimental measures to verify the feasibility of our design. The measured results indicate that the present numerical approach can be utilized for further optimization.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123411296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Circuit Performance With Sustained 50°C Temperature Exposure for Additively Printed Inkjet Circuits With SMT Components 持续50°C温度下SMT元件增材印刷喷墨电路性能的演变
P. Lall, Kartik Goyal, Scott Miller
{"title":"Evolution of Circuit Performance With Sustained 50°C Temperature Exposure for Additively Printed Inkjet Circuits With SMT Components","authors":"P. Lall, Kartik Goyal, Scott Miller","doi":"10.1115/ipack2022-97430","DOIUrl":"https://doi.org/10.1115/ipack2022-97430","url":null,"abstract":"In this paper, the Inkjet printing technique is utilized to characterize the printed circuit performance with surface mount components when exposed to 50°C temperature. Functional circuits such as low pass and high pass filters are printed, and their frequency performance is studied against temperature. Additive electronics manufacturing is rapidly evolving with novel end applications due to the research efforts currently being pursued. A constant pressure of innovation is increasing on the state-of-art printing techniques to further the use and implementation that can help reduce manufacturing costs. The realization of functional additively printed circuits requires the ability to attach surface mount components on additively printed traces. However, the attachment of surface mount components on additively printed circuits is not well understood owing to the interaction of the process parameters with the realized performance of the attached components. This paper demonstrates some of the widely used circuits such as low-pass and high pass filters with surface mount components on additive printed traces. FHE has found applications in wearable product platforms. For wearable applications, it is common for electronics to sustain human body temperatures and temperature rise resulting from heat dissipation during operation. In order to simulate operational temperature exposure, the fabricated functional circuits are subjected to 50°C exposure. The viability of inkjet printed functional circuits with surface mount components and their response under sustained temperature exposure has been studied.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115514158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Electromigration Coupling Different Physics Fields in Numerical Simulation 数值模拟中不同物理场耦合电迁移的评价
Chongyang Cai, Jiefeng Xu, Yangyang Lai, Junbo Yang, Huayan Wang, S. Ramalingam, G. Refai-Ahmed, Seungbae Park
{"title":"Evaluation of Electromigration Coupling Different Physics Fields in Numerical Simulation","authors":"Chongyang Cai, Jiefeng Xu, Yangyang Lai, Junbo Yang, Huayan Wang, S. Ramalingam, G. Refai-Ahmed, Seungbae Park","doi":"10.1115/ipack2022-97338","DOIUrl":"https://doi.org/10.1115/ipack2022-97338","url":null,"abstract":"\u0000 With the minimization trend of component size, electromigration is becoming an increasingly important concern. Current studies mainly focused on predicting the EM time to failure (TTF) based on Black’s equation. By simulating the current and temperature, TTF of test structures can be calculated. However, the current distribution is not considered in Black’s equation and this method may not be able to describe the current redistribution and current crowding effects. Some numerical models have been developed to simulate the current redistribution and joule heating influence. Still, electromigration is a Multiphysics phenomenon that couples not only electric and thermal fields but also includes atomic diffusion and stress migration. To simulate the actual migration behavior, the influence of different physic fields needs to be considered. In this paper, we employed different physics fields on test vehicle simulations: electrical-diffusion, electrical-thermal-diffusion and structural-thermal-electric-diffusion. The results of EM behavior as well as the computational time are compared.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123696990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信