{"title":"Dual-Evaporator Thermosyphon Cooling System for Electronics Cooling","authors":"Filippo Cataldo, R. L. Amalfi","doi":"10.1115/ipack2022-97729","DOIUrl":null,"url":null,"abstract":"\n When dealing with thermosyphon systems for electronics cooling, there is a dearth of experimental studies addressing the physics of having multiple evaporators in parallel. Indeed, it is very common to have several processing units on the same device, such as the Central Processing Units (CPUs) and Graphics Processing Units (GPUs) on desktop computers or servers. In this study, a thermosyphon-based system composed of two evaporators and a single air-cooled condenser is designed and tested for the layout typical of a desktop computer, workstation, or crypto-currency miner. Two evaporators at different heights and orientations compose the loo: the vertical evaporator occupies the highest position, while the evaporator is horizontal and located at the bottom of the loop. The total power dissipation of the thermosyphon-based system is 880 W when both the vertical and horizontal evaporators were cooling the corresponding units. The results show that the thermosyphon can effectively cool both processing units without instabilities. Moreover, the thermosyphon system can operate safely even when one of the two evaporators is not working.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"15 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-97729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
When dealing with thermosyphon systems for electronics cooling, there is a dearth of experimental studies addressing the physics of having multiple evaporators in parallel. Indeed, it is very common to have several processing units on the same device, such as the Central Processing Units (CPUs) and Graphics Processing Units (GPUs) on desktop computers or servers. In this study, a thermosyphon-based system composed of two evaporators and a single air-cooled condenser is designed and tested for the layout typical of a desktop computer, workstation, or crypto-currency miner. Two evaporators at different heights and orientations compose the loo: the vertical evaporator occupies the highest position, while the evaporator is horizontal and located at the bottom of the loop. The total power dissipation of the thermosyphon-based system is 880 W when both the vertical and horizontal evaporators were cooling the corresponding units. The results show that the thermosyphon can effectively cool both processing units without instabilities. Moreover, the thermosyphon system can operate safely even when one of the two evaporators is not working.