A. Heydari, Pardeep Shahi, Vahideh Radmard, Bahareh Eslami, Uschas Chowdhury, Chandraprakash Hinge, Lochan Sai Reddy Cinthaparthy, Harold Miyamura, Himanshu Modi, D. Agonafer, Jeremy Rodriguez
{"title":"在极低热负荷下运行的大功率液对液cdu温度波动最小化的控制策略","authors":"A. Heydari, Pardeep Shahi, Vahideh Radmard, Bahareh Eslami, Uschas Chowdhury, Chandraprakash Hinge, Lochan Sai Reddy Cinthaparthy, Harold Miyamura, Himanshu Modi, D. Agonafer, Jeremy Rodriguez","doi":"10.1115/ipack2022-97434","DOIUrl":null,"url":null,"abstract":"\n The rising demand for high-performance central and graphical processing units has resulted in the need for more efficient thermal management techniques like direct-to-chip liquid cooling. Direct Liquid Cooling using cold plates is one of the most efficient and investigated cooling technologies since the 1980s. Major data and cloud providers are actively deploying liquid-cooled data center infrastructure due to rising computational demands. Liquid to liquid heat exchangers used in liquid-cooled data centers is also referred to as coolant distribution units (CDUs). Most of these CDUs selected by the data center operator is based on the heat load of the data center and the available head with that CDU. In this study, three 52U racks with six high-power TTV-based servers (Thermal Test Vehicles) in each rack were designed and deployed. Each server consists of eight GPU TTVs and six NV switch heaters. A 450-kW liquid-cooled CDU is used, and propylene glycol 25% is used as a coolant. Typical CDUs are designed to operate at 20 to 30% of the rated heat load to achieve a stable secondary coolant supply temperature. The present study will investigate the operations of CDU at very low heat loads, like 1% to 10% of the CDU’s rated capacity. At these low loads, large fluctuations in secondary side supply temperature were observed. This large fluctuation can lead to the failure of the 3-way valve used in CDUs at the primary side. In this paper, a control strategy is developed to stabilize the secondary supply temperature within ± 0.5 °C at very low loads using the combination of a flow control valve on the primary side and PID control settings within the CDU.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Control Strategy for Minimizing Temperature Fluctuations in High Power Liquid to Liquid CDUs Operated at Very Low Heat Loads\",\"authors\":\"A. Heydari, Pardeep Shahi, Vahideh Radmard, Bahareh Eslami, Uschas Chowdhury, Chandraprakash Hinge, Lochan Sai Reddy Cinthaparthy, Harold Miyamura, Himanshu Modi, D. Agonafer, Jeremy Rodriguez\",\"doi\":\"10.1115/ipack2022-97434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The rising demand for high-performance central and graphical processing units has resulted in the need for more efficient thermal management techniques like direct-to-chip liquid cooling. Direct Liquid Cooling using cold plates is one of the most efficient and investigated cooling technologies since the 1980s. Major data and cloud providers are actively deploying liquid-cooled data center infrastructure due to rising computational demands. Liquid to liquid heat exchangers used in liquid-cooled data centers is also referred to as coolant distribution units (CDUs). Most of these CDUs selected by the data center operator is based on the heat load of the data center and the available head with that CDU. In this study, three 52U racks with six high-power TTV-based servers (Thermal Test Vehicles) in each rack were designed and deployed. Each server consists of eight GPU TTVs and six NV switch heaters. A 450-kW liquid-cooled CDU is used, and propylene glycol 25% is used as a coolant. Typical CDUs are designed to operate at 20 to 30% of the rated heat load to achieve a stable secondary coolant supply temperature. The present study will investigate the operations of CDU at very low heat loads, like 1% to 10% of the CDU’s rated capacity. At these low loads, large fluctuations in secondary side supply temperature were observed. This large fluctuation can lead to the failure of the 3-way valve used in CDUs at the primary side. In this paper, a control strategy is developed to stabilize the secondary supply temperature within ± 0.5 °C at very low loads using the combination of a flow control valve on the primary side and PID control settings within the CDU.\",\"PeriodicalId\":117260,\"journal\":{\"name\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipack2022-97434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-97434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Control Strategy for Minimizing Temperature Fluctuations in High Power Liquid to Liquid CDUs Operated at Very Low Heat Loads
The rising demand for high-performance central and graphical processing units has resulted in the need for more efficient thermal management techniques like direct-to-chip liquid cooling. Direct Liquid Cooling using cold plates is one of the most efficient and investigated cooling technologies since the 1980s. Major data and cloud providers are actively deploying liquid-cooled data center infrastructure due to rising computational demands. Liquid to liquid heat exchangers used in liquid-cooled data centers is also referred to as coolant distribution units (CDUs). Most of these CDUs selected by the data center operator is based on the heat load of the data center and the available head with that CDU. In this study, three 52U racks with six high-power TTV-based servers (Thermal Test Vehicles) in each rack were designed and deployed. Each server consists of eight GPU TTVs and six NV switch heaters. A 450-kW liquid-cooled CDU is used, and propylene glycol 25% is used as a coolant. Typical CDUs are designed to operate at 20 to 30% of the rated heat load to achieve a stable secondary coolant supply temperature. The present study will investigate the operations of CDU at very low heat loads, like 1% to 10% of the CDU’s rated capacity. At these low loads, large fluctuations in secondary side supply temperature were observed. This large fluctuation can lead to the failure of the 3-way valve used in CDUs at the primary side. In this paper, a control strategy is developed to stabilize the secondary supply temperature within ± 0.5 °C at very low loads using the combination of a flow control valve on the primary side and PID control settings within the CDU.