D. Min, M. Han, Juno Kim, Kangsan Lee, K. Lim, Euisun Choi, Seungdae Seok, Byeongjun Lee, M. Rhee
{"title":"非接触式伯努利拾取器三维器件堆积过程的数值模拟与实验验证","authors":"D. Min, M. Han, Juno Kim, Kangsan Lee, K. Lim, Euisun Choi, Seungdae Seok, Byeongjun Lee, M. Rhee","doi":"10.1115/ipack2022-97218","DOIUrl":null,"url":null,"abstract":"\n This paper focuses on numerical computation and experimental examination of Bernoulli picker, which is the essential module for the 3D stacking process for heterogeneous integration devices, to reveal the fundamental physics of non-contact die handling and to seek optimized design. We estimated the pick-up performance of the Bernoulli picker and the deformation of the die using pseudo-coupling of flow and structural analysis. We simulated the flow field around the target die and picker using the RANS equation with the k-w SST turbulence model to predict the levitation height between the picker surface and target die. Then we estimated the deformation of the die using the inertial relief approach of ABAQUS with computed pressure field information. Based on the numerical investigations, we made a prototype of a Bernoulli picker and conducted experimental measures to verify the feasibility of our design. The measured results indicate that the present numerical approach can be utilized for further optimization.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modeling and Experimental Validation on Non-Contact Bernoulli Picker for 3D Device Stacking Process\",\"authors\":\"D. Min, M. Han, Juno Kim, Kangsan Lee, K. Lim, Euisun Choi, Seungdae Seok, Byeongjun Lee, M. Rhee\",\"doi\":\"10.1115/ipack2022-97218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper focuses on numerical computation and experimental examination of Bernoulli picker, which is the essential module for the 3D stacking process for heterogeneous integration devices, to reveal the fundamental physics of non-contact die handling and to seek optimized design. We estimated the pick-up performance of the Bernoulli picker and the deformation of the die using pseudo-coupling of flow and structural analysis. We simulated the flow field around the target die and picker using the RANS equation with the k-w SST turbulence model to predict the levitation height between the picker surface and target die. Then we estimated the deformation of the die using the inertial relief approach of ABAQUS with computed pressure field information. Based on the numerical investigations, we made a prototype of a Bernoulli picker and conducted experimental measures to verify the feasibility of our design. The measured results indicate that the present numerical approach can be utilized for further optimization.\",\"PeriodicalId\":117260,\"journal\":{\"name\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipack2022-97218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-97218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Modeling and Experimental Validation on Non-Contact Bernoulli Picker for 3D Device Stacking Process
This paper focuses on numerical computation and experimental examination of Bernoulli picker, which is the essential module for the 3D stacking process for heterogeneous integration devices, to reveal the fundamental physics of non-contact die handling and to seek optimized design. We estimated the pick-up performance of the Bernoulli picker and the deformation of the die using pseudo-coupling of flow and structural analysis. We simulated the flow field around the target die and picker using the RANS equation with the k-w SST turbulence model to predict the levitation height between the picker surface and target die. Then we estimated the deformation of the die using the inertial relief approach of ABAQUS with computed pressure field information. Based on the numerical investigations, we made a prototype of a Bernoulli picker and conducted experimental measures to verify the feasibility of our design. The measured results indicate that the present numerical approach can be utilized for further optimization.