电子冷却用双蒸发器热虹吸冷却系统

Filippo Cataldo, R. L. Amalfi
{"title":"电子冷却用双蒸发器热虹吸冷却系统","authors":"Filippo Cataldo, R. L. Amalfi","doi":"10.1115/ipack2022-97729","DOIUrl":null,"url":null,"abstract":"\n When dealing with thermosyphon systems for electronics cooling, there is a dearth of experimental studies addressing the physics of having multiple evaporators in parallel. Indeed, it is very common to have several processing units on the same device, such as the Central Processing Units (CPUs) and Graphics Processing Units (GPUs) on desktop computers or servers. In this study, a thermosyphon-based system composed of two evaporators and a single air-cooled condenser is designed and tested for the layout typical of a desktop computer, workstation, or crypto-currency miner. Two evaporators at different heights and orientations compose the loo: the vertical evaporator occupies the highest position, while the evaporator is horizontal and located at the bottom of the loop. The total power dissipation of the thermosyphon-based system is 880 W when both the vertical and horizontal evaporators were cooling the corresponding units. The results show that the thermosyphon can effectively cool both processing units without instabilities. Moreover, the thermosyphon system can operate safely even when one of the two evaporators is not working.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"15 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual-Evaporator Thermosyphon Cooling System for Electronics Cooling\",\"authors\":\"Filippo Cataldo, R. L. Amalfi\",\"doi\":\"10.1115/ipack2022-97729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n When dealing with thermosyphon systems for electronics cooling, there is a dearth of experimental studies addressing the physics of having multiple evaporators in parallel. Indeed, it is very common to have several processing units on the same device, such as the Central Processing Units (CPUs) and Graphics Processing Units (GPUs) on desktop computers or servers. In this study, a thermosyphon-based system composed of two evaporators and a single air-cooled condenser is designed and tested for the layout typical of a desktop computer, workstation, or crypto-currency miner. Two evaporators at different heights and orientations compose the loo: the vertical evaporator occupies the highest position, while the evaporator is horizontal and located at the bottom of the loop. The total power dissipation of the thermosyphon-based system is 880 W when both the vertical and horizontal evaporators were cooling the corresponding units. The results show that the thermosyphon can effectively cool both processing units without instabilities. Moreover, the thermosyphon system can operate safely even when one of the two evaporators is not working.\",\"PeriodicalId\":117260,\"journal\":{\"name\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"volume\":\"15 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipack2022-97729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-97729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当处理用于电子冷却的热虹吸系统时,缺乏解决并行多个蒸发器的物理问题的实验研究。实际上,在同一个设备上有几个处理单元是非常常见的,例如桌面计算机或服务器上的中央处理单元(cpu)和图形处理单元(gpu)。在本研究中,设计并测试了一个基于热虹吸的系统,该系统由两个蒸发器和一个风冷冷凝器组成,适用于台式计算机、工作站或加密货币矿工的典型布局。两个不同高度和方向的蒸发器组成了厕所:垂直蒸发器占据了最高的位置,而水平蒸发器位于回路的底部。垂直蒸发器和水平蒸发器对相应机组进行冷却时,热虹吸系统的总耗电量为880 W。结果表明,热虹吸管能有效地冷却两个处理单元,且无不稳定性。此外,即使两个蒸发器中的一个不工作,热虹吸系统也可以安全运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Evaporator Thermosyphon Cooling System for Electronics Cooling
When dealing with thermosyphon systems for electronics cooling, there is a dearth of experimental studies addressing the physics of having multiple evaporators in parallel. Indeed, it is very common to have several processing units on the same device, such as the Central Processing Units (CPUs) and Graphics Processing Units (GPUs) on desktop computers or servers. In this study, a thermosyphon-based system composed of two evaporators and a single air-cooled condenser is designed and tested for the layout typical of a desktop computer, workstation, or crypto-currency miner. Two evaporators at different heights and orientations compose the loo: the vertical evaporator occupies the highest position, while the evaporator is horizontal and located at the bottom of the loop. The total power dissipation of the thermosyphon-based system is 880 W when both the vertical and horizontal evaporators were cooling the corresponding units. The results show that the thermosyphon can effectively cool both processing units without instabilities. Moreover, the thermosyphon system can operate safely even when one of the two evaporators is not working.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信