{"title":"Evaluating the sonophotocatalytic activity of Fe(III) doped cobalt oxide nanoparticles prepared by planetary ball milling method in the degradation of amoxicillin as a pollutant","authors":"Masih Darbandi, Hadis Asadi, At-har Najafi","doi":"10.1016/j.enmm.2025.101091","DOIUrl":"10.1016/j.enmm.2025.101091","url":null,"abstract":"<div><div>The world’s waters threatened by the dual forces of demographic growth and industrial expansion. Advanced oxidation techniques, particularly photocatalytic processes, offer a practical and eco-friendly solution to this problem by decomposing organic contaminants, providing a cleaner and safer aquatic environment. Doping of iron(III) ions through the ball milling method was applied to study the activity of nanoparticles (NPs) in the visible spectrum. Advanced techniques were employed to characterize synthesized NPs, utilizing Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), and Brunauer-Emmett-Teller (BET). The synthesized NPs exhibit a consistent mesoporous structure, as demonstrated by the experimental findings. Research findings indicate that the application of sonocatalytic, photocatalytic, and sonophotocatalytic techniques significantly reduced amoxicillin (AMX), a pharmaceutical pollutant, levels by 46.26%, 60.34%, and 83.14%, respectively, within the one-hour timeframe when utilizing Co<sub>3</sub>O<sub>4</sub>/Fe<sup>3+</sup> NPs. The 40.37% synergistic effect demonstrated the doped NPs’ efficiency. Additionally, the experimental data strongly aligns with the pseudo-second-order equation, confirming the reaction’s adherence to second-order kinetics. Scavengers like formic acid, disodium oxalate, and isopropanol demonstrated a reduction impact, slowing down the degradation rate by 29.44%, 36.62%, and 74%, respectively. Furthermore, across all four cycles, the negligible decline in the degradation rate confirmed the Co<sub>3</sub>O<sub>4</sub>/Fe<sup>3+</sup> NPs’ reusability and performance.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101091"},"PeriodicalIF":0.0,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144771072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alimin Alimin , Sri Juari Santosa , Akrajas Ali Umar , Rahmayanti Rahmayanti , Alham Alham
{"title":"Green conductive paper derived from sago pulp of Southeast Sulawesi based on magnetic nanocomposite of Fe3O4/carbon nanofibers for phenol adsorption","authors":"Alimin Alimin , Sri Juari Santosa , Akrajas Ali Umar , Rahmayanti Rahmayanti , Alham Alham","doi":"10.1016/j.enmm.2025.101090","DOIUrl":"10.1016/j.enmm.2025.101090","url":null,"abstract":"<div><div>A green conductive magnetic nanocomposite paper that has been synthesized by decorating carbon nanofibers (CNFs) with Fe<sub>3</sub>O<sub>4</sub> nanoparticles (Fe<sub>3</sub>O<sub>4</sub>/CNFs) and mixed with sago pulp as phenol adsorbents has been investigated. The paper was synthesized using sago pulp waste from the sago farmer’s community. To produce cellulose paper, Sago pulp was treated mechanically and chemically through dehemicellulose and delignification techniques. Fe<sub>3</sub>O<sub>4</sub> was synthesized by ultrasonication of iron sand in NaOH solution (8 M) for 120 min at 70 °C. The nanocomposite of Fe<sub>3</sub>O<sub>4</sub>/CNFs was prepared by ultrasonication Fe<sub>3</sub>O<sub>4</sub> and CNFs in water. The nanocomposite paper was finally prepared by mixing sago’s cellulose and polyvinyl alcohol (PVA) with ultrasonication, followed by solvent casting drying. The phase crystallinity of the paper was evaluated via X-ray Diffraction (XRD) and Fourier Transform infrared (FTIR) spectroscopy. The phenol’s sensing and adsorption kinetic properties over the magnetic paper were examined using a UV–Vis spectrophotometer at a maximum wavelength of 269 nm. The result showed that the phenol was efficiently adsorbed on magnetic paper under an optimum pH of 7 at a contact time of 90 min. The adsorption followed Ho-McKay pseudo-second-order kinetics with adsorption capacity at an equilibrium of 3.15 mg/g. The magnetic and conductive paper of Fe<sub>3</sub>O<sub>4</sub>/CNFs should be extensively used in the adsorption of phenolic compounds in the environment.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101090"},"PeriodicalIF":0.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144723920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ederaldo Luiz Beline , Alexandre Amado de Moura , Alexandre Diório , Anna Carla Ribeiro , Benício Alves de Abreu Filho , Daniel Tait Vareschini , Débora Federici dos Santos , Leidiane Silva Vasconcelos , Rosângela Bergamasco , Maria Angélica Simões Dornellas de Barros
{"title":"Environmentally-friendly activated carbon for the removal of antibiotic-resistant bacteria removal from hospital wastewater","authors":"Ederaldo Luiz Beline , Alexandre Amado de Moura , Alexandre Diório , Anna Carla Ribeiro , Benício Alves de Abreu Filho , Daniel Tait Vareschini , Débora Federici dos Santos , Leidiane Silva Vasconcelos , Rosângela Bergamasco , Maria Angélica Simões Dornellas de Barros","doi":"10.1016/j.enmm.2025.101088","DOIUrl":"10.1016/j.enmm.2025.101088","url":null,"abstract":"<div><div>The rise of antibiotic-resistant bacteria has driven research into natural antimicrobial alternatives. Allicin, a compound formed in freshly crushed garlic cloves, exhibits antibacterial properties but suffers from poor stability in aqueous environments. That is why this study aimed to explore the synthesis and characterization of allicin-modified activated carbon (AMAC) and evaluate its potential application removing <em>Escherichia coli</em> from synthetic hospital wastewater (HWW). Sugarcane bagasse (SB) provided by a local Brazilian alcohol mill was transformed into activated carbon (SBAC) through a hydrothermal process (heating at 200 °C for 24 h followed by activation at 450 °C for 10 min). Allicin extract was obtained from fresh garlic and impregnated onto the SBAC surface, resulting in AMAC with 105 µm mean diameter. The materials were characterized (FT-IR, Raman and N<sub>2</sub>-physisorption), revealing significant structural and surface modifications. The antibacterial activity of allicin against <em>E. coli</em> was assessed through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) trials and disk diffusion, demonstrating effective bacterial growth inhibition, as expected. Adsorption assays showed that AMAC enhanced <em>E. coli</em> removal efficiency in synthetic HWW by 3 %, compared to the AMAC in deionized and sterile water. This improvement was attributed to the positive interactions and synergistic effects between AMAC and the wastewater constituents. In other words, it means that AMAC can be used in the <em>E. coli</em> removal even in presence of organic and inorganic molecules without any loss of efficiency. The study also highlights the environmentally friendly synthesis process of AMAC and its potential as a sustainable solution for treating HWWs without the use of antibiotics, thus avoiding the potential release of pharmaceutical compounds into the environment. The results suggest that AMAC could be a viable alternative for enhancing the removal of antibiotic-resistant bacteria from contaminated water sources, contributing to public health and environmental protection.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101088"},"PeriodicalIF":0.0,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144661988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detoxification of wastewater with toxic cyanide substance using TiO2-based photocatalysts","authors":"Erkan Cakiroglu , Suleyman Demir , Erdal Celik","doi":"10.1016/j.enmm.2025.101087","DOIUrl":"10.1016/j.enmm.2025.101087","url":null,"abstract":"<div><div>Industrial, agricultural, and domestic chemicals increasingly pollute the environment, affecting water, air, and soil even at low concentrations. This pollution, especially from waste, is a serious global problem. Using renewable energy like sunlight with photocatalysts offers an environmentally friendly way to remove pollutants. The focus of the innovation is the use of V, Er, and Ce-doped, multilayer mosaic-structured TiO<sub>2</sub> thin films coated on glass substrates with their suitable band gap values to enhance the performance and sustainability of traditional TiO<sub>2</sub> photocatalysts for the effective treatment of cyanide-containing wastewater under sunlight/UV light. In this study, it was aimed to produce V, Er, Ce pure/doped TiO<sub>2</sub> thin coatings on glass substrates with sol–gel technique and photocatalytic degradation of cyanide in wastewater by using these substrates. The structural, microstructural and electrical properties of the produced films were investigated and thin films coated on glass substrates were used as photocatalysts in the photocatalytic degradation of cyanide in wastewater under UV/sun light source. As an innovative approach, laboratory and industrial scale TiO<sub>2</sub>, V-TiO<sub>2</sub>, Er-TiO<sub>2</sub>, and Ce-TiO<sub>2</sub> coatings with the anatase phase on glass substrates exhibit a multilayered mosaic architecture. The coatings’ refractive index, film thickness, and energy bandgap were observed to vary within the ranges of 1.6028–1.6075 nD, 2.408–2.750 μm, and 3.08–3.73 eV, respectively. Notably, a 95 % efficiency was achieved in cyanide degradation from wastewater using these modified TiO<sub>2</sub> films, indicating their significant potential for high-performance photocatalytic applications in environmental remediation. Photocatalytic samples demonstrated effective cyanide degradation over 10 industrial-scale cycles, with efficiency declining due to impurity buildup from real wastewater. Cleaning the surface restored activity, highlighting the material’s potential for recyclability. As a result, this innovation offers up to 95 % cyanide removal efficiency, reusability and sustainability through surface cleaning, and applicability at industrial scale.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101087"},"PeriodicalIF":0.0,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144656794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Z-scheme BiOCl/g-C3N4 nanocomposite for high performance photocatalytic degradation of organic pollutants and charge carrier dynamics","authors":"Orawan Rojviroon , Gomathi Abimannan , Priyadharsan Arumugam , Maadeswaran Palanisamy , Ranjith Rajendran , Govarthini Ramasamy , Sanya Sirivithayapakorn , Natacha Phetyim , Thammasak Rojviroon","doi":"10.1016/j.enmm.2025.101086","DOIUrl":"10.1016/j.enmm.2025.101086","url":null,"abstract":"<div><div>In this research work, Z scheme BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite was synthesized through hydrothermal process and combined with thermal decomposition method. Numerous characterization techniques were utilized to examine the phase structure, functional groups, morphology, elemental composition, electronic structure and optical behaviour of as synthesized materials. The boosted light absorption capability of BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite which is accredited to the synergetic interaction between the BiOCl and g-C<sub>3</sub>N<sub>4</sub> materials. The photocatalytic degradation efficacy of BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite over Rhodamine B (RhB) textile pollutant was exhibited 97 % within 100 min which is higher than the pristine BiOCl material. It’s caused by the active separation, allocation of electrons and holes and reduce the recombination. Five successive recycle process proved the stability and reusability of the material. Finally, This work demonstrates an enriched Z scheme BiOCl/g-C<sub>3</sub>N<sub>4</sub> nanocomposite will deliver the impression of construct the Z scheme heterojunction photocatalyst to augment the photocatalytic activity in the occurrence of visible light.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101086"},"PeriodicalIF":0.0,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144366686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantifying silver and gold nanoparticles in water via carbazole fluorescence quenching: A simple and economical approach","authors":"Rodrigo Nicolás Núñez , Alicia Viviana Veglia , Natalia Lorena Pacioni","doi":"10.1016/j.enmm.2025.101084","DOIUrl":"10.1016/j.enmm.2025.101084","url":null,"abstract":"<div><div>The fluorescence quenching of carbazole and carbazole@2-hydroxypropyl-β-cyclodextrin complex was evaluated in water as an analytical strategy for the quantification of six different silver and gold nanoparticles with either gallic acid, citrate, or p-(2-hydroxyethoxy) benzoic acid as ligands. The free carbazole is more sensitive to the analyzed metal nanoparticles with detection limits in the picomolar level (e.g., 0.106 pM for citrate-stabilized silver nanorods (AgNR) and 34.5 pM for citrate-stabilized silver nanospheres (AgNP<sub>c</sub>)) compared to the cyclodextrin-complexed carbazole (e.g., 0.200 pM for AgNR to insensitive for AgNP<sub>c</sub>). The recovery assays in spiked tap water and surface river water for all the analyzed nanoparticles were between 90 % and 112 % with 95 % confidence. The proposed method is an excellent alternative to more sophisticated methodologies for accurately quantifying silver and gold nanoparticles in aqueous systems.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101084"},"PeriodicalIF":0.0,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144291588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green synthesis of Nigella sativa-mediated silver nanoparticles for enhanced antibacterial activity and wound healing: Mechanistic insights and biomedical applications","authors":"Chella Perumal Palanisamy , Sirilux Poompradub , Kanokwan Sansanaphongpricha , Selvaraj Jayaraman , Karthik Subramani , Faridah Sonsudin","doi":"10.1016/j.enmm.2025.101085","DOIUrl":"10.1016/j.enmm.2025.101085","url":null,"abstract":"<div><div>This study demonstrates an eco-friendly synthesis of silver nanoparticles (AgNPs) using chloroform extract of <em>Nigella sativa</em> seeds (CENSS) for combating bacterial infections and accelerating wound repair. The work highlights the dual therapeutic potential of CENSS-AgNPs through rigorous physicochemical, biological, and mechanistic analyses. The stable AgNPs was formed because of the transformation of silver ions by the CENSS. These NPs were thoroughly characterized using various physiochemical parameters. The biosynthesized CENSS-AgNPs demonstrated substantial antibacterial activity as indicated by the prominent inhibition areas observed on the agar plates. These are prominent bacteria which play significant roles in both human health and disease. Cytotoxicity assessment on human keratinocyte cells (HaCaT) revealed dose-dependent effects, with CENSS-AgNPs demonstrating feasible in wound healing by hastening scratch closure and enhancing cell migration. Furthermore, the protein expression analysis explored that CENSS-AgNPs stimulated the expression levels of platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) which are crucial for wound repair. Over all, this study underscores the therapeutic promise of CENSS-mediated AgNPs in combating infections and promoting tissue regeneration, suggesting their prospective utility in advanced wound care and biomedical fields. Further exploration of their biological mechanisms and clinical applications is warranted to harness their full therapeutic potential.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101085"},"PeriodicalIF":0.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"rGO/Carbon composite-based electrocatalytic electrodes for efficient nitrate adsorption and reduction − current challenges and future perspective","authors":"Krishnan Vancheeswaran Prasad , Rachel Angeline Lenin , Mohanraj Kumar , Jih-Hsing Chang","doi":"10.1016/j.enmm.2025.101080","DOIUrl":"10.1016/j.enmm.2025.101080","url":null,"abstract":"<div><div>The summary of this review paper addresses the pressing issue of nitrate contamination in water sources, increasing concern primarily due to agricultural runoff and industrial waste. Elevated nitrate levels pose significant risks to both human health, such as methemoglobinemia (blue baby syndrome), and aquatic ecosystems through processes like eutrophication. The paper examines the potential of carbon composite-based electrocatalytic electrodes, particularly those incorporating reduced graphene oxide (rGO), for effectively removing nitrates from contaminated water. The review uniquely contributes by analyzing nitrate reduction mechanisms, rGO’s catalytic role, electrode fabrication challenges, operational stability, pilot-scale implementation, and pathways for industrial adoption of rGO-based electrocatalysts. The high surface area of these materials makes them interesting, have superior conductivity, and excellent catalytic properties, which enhance their ability to adsorb and reduce nitrate ions. It demonstrates how major advancements in carbon composites have improved the effectiveness and selectivity of nitrate reduction, demonstrating their potential for real-world applications. However, challenges remain, particularly about scalability, the durability of the materials, and the unwanted production of by-products like ammonia during the reduction process. The further research is necessary to overcome these challenges by focusing on the development of more stable, scalable, and cost-effective materials. Reducing harmful by-products will also be essential for practical industrial applications. Advancements in this field will contribute to sustainable water treatment and the achievement of Sustainable Development Goal, which focuses on clean water and sanitation.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101080"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144221805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimony retention and transformation: a novel approach using microfluidics and hydrogel, biocomposite nanomagnetite aggregates","authors":"Evgenia-Maria Papaslioti , Hervé Tabuteau , Julien Farasin , Delphine Vantelon , Valerie Magnin , Laurent Charlet","doi":"10.1016/j.enmm.2025.101083","DOIUrl":"10.1016/j.enmm.2025.101083","url":null,"abstract":"<div><div>Antimony (Sb) is a redox sensitive metalloid increasingly recognized as an emerging contaminant of global concern due to its toxicity and widespread occurrence in natural and anthropogenically impacted water systems. It is commonly found in both drinking and wastewater, where it poses potential risks to human health. Magnetite nanoparticles, known as active retention agents for redox-sensitive contaminants, are combined here with polymeric matrices to ease their application in water treatment systems and to enhance their stability, dispersibility, and sorption efficiency. In this study, we assess Sb retention using hydrogel-nanomagnetite aggregates, with and without chitosan coating, under flow-through microfluidic conditions that mimic natural and engineered aquatic environments. Advanced synchrotron-based μ-XRF mapping and μ-XANES spectroscopy were employed for the first time to such integrated system to simultaneously resolve the spatial distribution and oxidation state of sorbed Sb. Antimonate immobilization followed two distinct, input concentration-dependent pathways: (i) reduction to Sb(III), forming stable inner-sphere Fe–O–Sb complexes, or (ii) adsorption via electrostatic and complexation mechanisms. At low Sb(V) concentrations reduction is favored in chitosan-free aggregates, enabling homogeneous Sb(III) diffusion through the media. At higher concentrations, and particularly in chitosan-coated systems, Sb(V) is immobilized predominantly via adsorption, accumulating on the rim of the aggregates. Chitosan enhances Sb(V) sorption by providing positively charged functional groups and, along with pH and Sb input concentration, controls Sb sorption processes. These findings deepen the understanding of Sb retention mechanisms through redox and sorption interactions in polymer-supported magnetite systems, as revealed using microfluidics technology, and provide a new foundation for the development of advanced water treatment technologies with international relevance for mitigating redox-sensitive contaminants.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101083"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144231050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana Rahayuning Wulan , Nurul Fahimah , Mariska Margaret Pitoi , Raden Tina Rosmalina , Muammar Qadafi , Hanny Meirinawati , Wulan Ayu Ningsih
{"title":"Novel insights into the presence and risks of phthalate esters in the Citarum River, Indonesia: Seasonal variations","authors":"Diana Rahayuning Wulan , Nurul Fahimah , Mariska Margaret Pitoi , Raden Tina Rosmalina , Muammar Qadafi , Hanny Meirinawati , Wulan Ayu Ningsih","doi":"10.1016/j.enmm.2025.101082","DOIUrl":"10.1016/j.enmm.2025.101082","url":null,"abstract":"<div><div>This study investigates the occurrence and risks of phthalate acid esters (PAEs) in the Citarum River across 11 sampling sites during rainy and dry seasons. The average total concentration of PAEs was higher in the rainy season (79.18 ± 50.51 µg/L) than in the dry season (1.67 ± 0.71 µg/L). Dimethyl phthalate (DMP), diethyl phthalate (DEP), and bis (2-Ethylhexyl) phthalate (DEHP) were detected only during the rainy season with concentration ranges of not detected (ND) - 7.284, 7.135 - 55.674, and ND - 20.713 µg/L, respectively. Dibutyl phthalate (DBP) was present in both seasons, with an increase from ND - 2.758 µg/L (dry season) to 9.681 - 160.245 µg/L (rainy season), contributing to elevated levels of endocrine-disrupting chemicals (EDCs) (Estradiol Equivalent Concentration (EEQ) > 0.002 µg/L). Ecological risks were low during the dry season but rose to high levels in the rainy season (risk quotient (RQ) > 1), driven by DBP and DEP exposure. Health risk assessments showed non-carcinogenic risks (target hazard quotient (THQ) < 1) for consuming <em>Tilapia</em> sp. and Common carp at most sites, except one upstream location during the rainy season, where toddlers were at risk. DBP was the main contributor to these risks, accounting for 80.85% in <em>Tilapia</em> sp. and 89.05% in Common carp. DEHP-associated cancer risks were absent in the dry season but appeared at one location during the rainy season. The findings highlight the urgent need to address PAEs pollution in the Citarum River through source control, monitoring in water compartments, and establishing regulatory limits for PAEs in wastewater and surface waters.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101082"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}