{"title":"合成后改性Fe (III)基金属有机骨架的制备及其电化学检测4-氨基酚的研究","authors":"Diksha , Anjali , Anu Prathap M. Udayan , Balwinder Kaur , Anita Gupta , Megha , Veeranna Yempally , Harminder Kaur","doi":"10.1016/j.enmm.2025.101072","DOIUrl":null,"url":null,"abstract":"<div><div>4-Aminophenol (4-AP) is an aromatic compound with reactive hydroxyl and amino groups. It is widely used in the production of dyes, pharmaceuticals, and polymer stabilizers but poses significant environmental and health hazards. Therefore, developing a reliable method for the detection of trace amounts of 4-AP is crucial. This study focuses on the fabrication of a cost-effective electrochemical sensor for 4-AP based on the post-synthetic modification of Fe-MIL-101-NH<sub>2</sub>. The sensor demonstrated a linear detection range of 0.5–400 µM with a low limit of detection (LOD) of 0.12 µM and a sensitivity value of 0.29 µA/µM/cm<sup>2</sup> under optimized conditions. The synergistic effect of Fe-MIL-101-NH<sub>2</sub>, the Schiff base, and nickel enhances its electronic properties, including reduced band gap energy, lower charge transfer resistance, and improved conductivity, leading to superior redox behavior of 4-AP. Key features of the sensor include high sensitivity, favorable selectivity, outstanding stability, and excellent reusability. It exhibits minimal interference from common organic and inorganic species, making it suitable for real-world applications. The use of earth-abundant materials further underscores its cost-effectiveness and environmental sustainability. The sensor has been applied in detecting 4-AP in tap water and paracetamol samples and achieved positive results further demonstrating its practicality for real-world applications.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101072"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of post-synthetic modified Fe (III)-based metal organic framework for the electrochemical detection of 4-amino phenol\",\"authors\":\"Diksha , Anjali , Anu Prathap M. Udayan , Balwinder Kaur , Anita Gupta , Megha , Veeranna Yempally , Harminder Kaur\",\"doi\":\"10.1016/j.enmm.2025.101072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>4-Aminophenol (4-AP) is an aromatic compound with reactive hydroxyl and amino groups. It is widely used in the production of dyes, pharmaceuticals, and polymer stabilizers but poses significant environmental and health hazards. Therefore, developing a reliable method for the detection of trace amounts of 4-AP is crucial. This study focuses on the fabrication of a cost-effective electrochemical sensor for 4-AP based on the post-synthetic modification of Fe-MIL-101-NH<sub>2</sub>. The sensor demonstrated a linear detection range of 0.5–400 µM with a low limit of detection (LOD) of 0.12 µM and a sensitivity value of 0.29 µA/µM/cm<sup>2</sup> under optimized conditions. The synergistic effect of Fe-MIL-101-NH<sub>2</sub>, the Schiff base, and nickel enhances its electronic properties, including reduced band gap energy, lower charge transfer resistance, and improved conductivity, leading to superior redox behavior of 4-AP. Key features of the sensor include high sensitivity, favorable selectivity, outstanding stability, and excellent reusability. It exhibits minimal interference from common organic and inorganic species, making it suitable for real-world applications. The use of earth-abundant materials further underscores its cost-effectiveness and environmental sustainability. The sensor has been applied in detecting 4-AP in tap water and paracetamol samples and achieved positive results further demonstrating its practicality for real-world applications.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"23 \",\"pages\":\"Article 101072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153225000339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Fabrication of post-synthetic modified Fe (III)-based metal organic framework for the electrochemical detection of 4-amino phenol
4-Aminophenol (4-AP) is an aromatic compound with reactive hydroxyl and amino groups. It is widely used in the production of dyes, pharmaceuticals, and polymer stabilizers but poses significant environmental and health hazards. Therefore, developing a reliable method for the detection of trace amounts of 4-AP is crucial. This study focuses on the fabrication of a cost-effective electrochemical sensor for 4-AP based on the post-synthetic modification of Fe-MIL-101-NH2. The sensor demonstrated a linear detection range of 0.5–400 µM with a low limit of detection (LOD) of 0.12 µM and a sensitivity value of 0.29 µA/µM/cm2 under optimized conditions. The synergistic effect of Fe-MIL-101-NH2, the Schiff base, and nickel enhances its electronic properties, including reduced band gap energy, lower charge transfer resistance, and improved conductivity, leading to superior redox behavior of 4-AP. Key features of the sensor include high sensitivity, favorable selectivity, outstanding stability, and excellent reusability. It exhibits minimal interference from common organic and inorganic species, making it suitable for real-world applications. The use of earth-abundant materials further underscores its cost-effectiveness and environmental sustainability. The sensor has been applied in detecting 4-AP in tap water and paracetamol samples and achieved positive results further demonstrating its practicality for real-world applications.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation