Abueliz Modwi , Ahmed Algarni , Ibrahim Sulaiman Almuzaini , Abdulaziz I. Alromaeh , Fahad Ibrahim Alghuraybi , Tahani M. Alresheedi , Abdulaziz A. Alharbi
{"title":"Removal of Cu and Co ions form polluted water via Bi-TiO2 loaded on g-C3N4 nanostructures","authors":"Abueliz Modwi , Ahmed Algarni , Ibrahim Sulaiman Almuzaini , Abdulaziz I. Alromaeh , Fahad Ibrahim Alghuraybi , Tahani M. Alresheedi , Abdulaziz A. Alharbi","doi":"10.1016/j.enmm.2025.101063","DOIUrl":"10.1016/j.enmm.2025.101063","url":null,"abstract":"<div><div>This study surveys the impact of Bi@TiO<sub>2</sub> on the separate and combined adsorption of Cu (II) and Co (II) heavy metals in a water-based solution using g-C<sub>3</sub>N<sub>4</sub> nanosheets. The Bi@TiO<sub>2</sub>@CN nanostructures are effectively produced using the sol–gel technique and ultrasound method. The manufactured materials of Bi@TiO<sub>2</sub>@CN are confirmed by SEM, EDX, XRD, FTIR, and XPS characterizations. The BET surface area was 45.43 m<sup>2</sup>/g, and the pore size distribution is 1.5406 nm. Nanostructures exhibit significant adsorption capabilities for Cu (II) (562.7 mg/g) and Co (II) (547 mg/g) after 24 h under optimum experimental conditions. The adsorption isotherm models have a strong agreement with the Langmuir isotherm, while the investigation on kinetics model fitting demonstrates an excellent fit with the pseudo-second-order. Furthermore, the adsorbent composite was regenerated in four cycles without loss of efficiency or stability. This study offers valuable insights into the significance of Bi@TiO<sub>2</sub>@CN nanostructures in achieving extremely efficient, fast, and simultaneous removal of heavy metals.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101063"},"PeriodicalIF":0.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanotechnology in textiles: Environmental safety and sustainable practices","authors":"Sunita Boruah , Seiko Jose","doi":"10.1016/j.enmm.2025.101062","DOIUrl":"10.1016/j.enmm.2025.101062","url":null,"abstract":"<div><div>Incorporation of nanoparticles into textiles brings significant functional properties while maintaining flexibility. Today, nano textiles are employed in various sectors such as sports, healthcare, and protection. Nonetheless, nanotechnology is seen to have the ability to change the current status of technologies dramatically; there is concern about its effects on the human and environment. The first part lays down the basics of nanoparticles’ toxicology while stressing that future studies must fully characterize nanoparticles and how they interact, become bioactive, and pose threats to humans and the environment. This review article discusses the environmental and safety aspects of nanomaterials while incorporating in textiles. The current regulations regarding nanomaterials in textiles such as REACH (Registration, Evaluation, Authorisation, and Restriction of Chemicals), EPA (Environmental Protection Agency), and OSHA (Occupational Safety and Health Administration) highlight the need for processes covering and measuring nanoparticles is focused. Also, it considers the integration of green nanotechnology, provides recommendations for the safe usage of nanotechnology to eradicate negative outcomes on the environment, and suggests the use of natural and recyclable items. By illustration of real-life applications, the review shows that sustainability and applicability of nanoparticles could go hand in hand for further developments such as smart and responsive textiles, as well as catering to the future aspects of nanotechnology in textiles.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101062"},"PeriodicalIF":0.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanobiochar: A sustainable solution for environmental remediation","authors":"Vikram Jadhav , Bajirao Ahire , Asha Pawar , Arpita Roy , Ashish Kumar , Kuldeep Sharma , Swetha Raj , Rajan Verma","doi":"10.1016/j.enmm.2025.101061","DOIUrl":"10.1016/j.enmm.2025.101061","url":null,"abstract":"<div><div>NBC, a nanoform of biochar, shows unique potential due to higher reactivity with an increased surface area and surface-active side modifications. This paper presents a complete overview of the subject and identifies its potential role in the eco-friendly elimination of several kinds of environmental contaminants. It is usually prepared by pyrolyzing biomass at the nanoscale; this process can be modified to improve the material’s catalytic and surface properties. The physicochemical properties of NBC, which govern its interaction with pollutants, are analyzed through characterization techniques. Adsorption, absorption, and catalysis are the several modes of NBC that may remove contaminants because of their larger surface area and different functional group applications of NBC in Environmental Cleanup. NBC has been shown to have numerous applications in environmental cleanup, such as air filtration, soil decontamination, and wastewater treatment. Recent studies suggest that NBC extracts heavy metals, organic contaminants, and other hazardous materials, often surpassing traditional biochar and other nanomaterials. Its production process can be designed to minimize environmental impact. NBC should be integrated with other remediation techniques using a synergistic approach in complex ecological systems. Synthesis of nanobiochar focuses on following principles from green chemistry and sustainability in the development stages for a global solution in problem-solving ecological management.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101061"},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laiza Bergamasco Beltran , Anna Carla Ribeiro , Taynara Basso Vidovix , Gessica Wernke , Luis Fernando Cusioli , João Carlos Palazzo de Mello , Benício Alves de Abreu Filho , Rosângela Bergamasco , Angélica Marquetotti Salcedo Vieira
{"title":"Zeolite functionalized with metal ions: A dual strategy for water purification − removal of sertraline hydrochloride and pathogenic bacteria","authors":"Laiza Bergamasco Beltran , Anna Carla Ribeiro , Taynara Basso Vidovix , Gessica Wernke , Luis Fernando Cusioli , João Carlos Palazzo de Mello , Benício Alves de Abreu Filho , Rosângela Bergamasco , Angélica Marquetotti Salcedo Vieira","doi":"10.1016/j.enmm.2025.101060","DOIUrl":"10.1016/j.enmm.2025.101060","url":null,"abstract":"<div><div>Sertraline hydrochloride (SER) is widely used to treat depression, anxiety, and other disorders, but its presence in global water bodies underscores the need for innovative water treatment solutions. This study introduces a novel adsorbent developed through a sustainable approach, where natural zeolites were functionalized with copper oxide nanoparticles (NZ_NPCuO) to enhance SER removal from contaminated water. Copper oxide nanoparticles were synthesized via a green method using Barbatimão (<em>Stryphnodendron polyphyllum</em> Mart.) stem bark extract. Comprehensive characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), leaching tests, and zeta potential measurements validated the successful formation and chemical stability of the nanoparticles. SER adsorption tests revealed a maximum capacity (q<sub>max</sub>) of 25.19 mg/g at 298 K, achieving equilibrium within 960 min. The Elovich and Langmuir models were determined to best describe the kinetic and isothermal data, respectively. Thermodynamic analyses indicated that the adsorption process is exothermic, spontaneous, and reversible. Potential adsorption mechanisms included hydrogen bonding, π-interactions, and electrostatic attraction. We also evaluated the antibacterial properties of NZ_NPCuO using the disk diffusion method against Gram-positive and Gram-negative bacteria, including <em>Staphylococcus aureus</em>, <em>Escherichia coli</em>, and <em>Pseudomonas aeruginosa</em>, resulting in inhibition zones of 26 mm, 7.5 mm, and 14 mm, respectively. Thus, the proposed composite shows great potential for SER removal from wastewater and offers a promising alternative for developing effective antimicrobial agents for different proposals, particularly for microbiological water treatment.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101060"},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatimazahra Sayerh , Latifa Mouhir , Laila Saafadi , Ilham Nassri , Abdelmoula El Ouardi , Najia Ameur
{"title":"Analysis of pathogenic microorganisms in hospital effluents: A statistical approach to understanding antibiotic resistance and environmental health risks","authors":"Fatimazahra Sayerh , Latifa Mouhir , Laila Saafadi , Ilham Nassri , Abdelmoula El Ouardi , Najia Ameur","doi":"10.1016/j.enmm.2025.101059","DOIUrl":"10.1016/j.enmm.2025.101059","url":null,"abstract":"<div><div>Antibiotic resistance is a significant public health issue in the fight against infectious diseases, and hospital effluent is a special category of liquid waste, hazardous because of its contagious and toxic characteristics. However, these effluents are becoming uncontrollable, and the problem of their discharge into the environment is becoming increasingly important, especially as hospital effluents are a source of antibiotic bacteria. This work aims to analyze hospital effluents from two prefectural hospitals in the southwest region of Morocco (Temara-Sale towns) by assessing the microbiological quality and diversity of antibiotic-resistant bacteria in these effluents collected via weekly spot sampling. Samples taken from both sites showed high loads of fecal indicator bacteria and pathogens, particularly total coliforms, with levels ranging from 10<sup>2</sup> and 7,5 × 10<sup>4</sup> UFC/100 ml, fecal coliforms (8,1 × 10<sup>6</sup> UFC/100 ml), <em>Escherichia coli</em> (5,1 × 10<sup>6</sup> UFC/100 ml), <em>intestinal enterococci</em> (8,1 × 10<sup>3</sup> UFC/100 ml), <em>Staphylococcus aureus</em> (6,6 × 10<sup>6</sup> UFC/100 ml) and <em>Pseudomonas aeruginosa</em> (7,9 × 10<sup>6</sup> UFC/100 ml). The study of antibiotic resistance in strains isolated from hospital effluent revealed that of the 75 isolates examined, <em>Escherichia coli</em> was the most commonly detected isolate in both hospitals, with a prevalence of 42 % at PHT Hospital and 47 % at PHS Hospital. It was followed by <em>Klebsiella pneumonia</em>, <em>Pseudomonas aeruginosa</em>, and <em>Staphylococcus aureus</em>, with respective prevalences of 29 %, 16 %, and 12 % at PHT Hospital, and 16 %, 22 % and 13 % at PHS Hospital. The results show varying resistance rates to different antimicrobials, with high levels of resistance observed with antibiotics belonging to the beta-lactam class. Characterization of the hospital effluents from the two hospitals studied showed that these effluents present health and environmental risks that qualify the hospital-environment interface as a place conducive to the transfer of resistance, thus necessitating the urgent development of specific treatment methods before discharge into the natural environment.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101059"},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143562015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biosynthesis of silver nanoparticles using Macrococcus caseolyticus strain AgD isolated from crude oil-contaminated water samples and their application in remediation of crude oil contamination in the Niger Delta aquatic environment","authors":"A.A. Ikhumetse , O.P. Abioye , A.S. Kovo , U.J.J. Ijah","doi":"10.1016/j.enmm.2025.101057","DOIUrl":"10.1016/j.enmm.2025.101057","url":null,"abstract":"<div><div>This study was carried out to synthesize bacterial silver nanoparticles (AgNPs) using <em>Macrococcus caseolyticus</em> strain AgD for remediation of crude oil contamination in aquatic environment. Characterization was done to ascertain the size, crystallinity, morphology and elemental composition of the bacterial AgNP, which was used for the removal of Total Petroleum Hydrocarbons (TPH) in the water samples. Response surface methodology (RSM) was used for design and optimization of the TPH response. The results indicated that TPH in some water samples were above permissible limits given by the World Health Organization. The results of 16S rDNA sequencing showed that the isolate is related to <em>Macrococcus caseolyticus.</em> The optical properties of AgNPs showed a peak at 425 nm while the XRD patterns revealed crystallinity with average crystallite size of 25.25204 ± 5.89 nm. The RSM showed a good fit for 2FI regression model for the AgNP as elucidated by the coefficient of determination with R<sup>2</sup> value of 0.9295. Run 1 (contact time 22.5 mins, stirring speed 1625 rpm, dosage 0.275 g, temperature 55 °C) obtained the highest TPH removal of 94.26 %, which was higher than the predicted (93.15 %) using the bacterial strain. The maximum predicted TPH removal was however 94.02 % at optimum factors of contact time (22.5 mins /100 mL), stirring speed (1620 rpm/100 mL), dosage (0.3206 g) and temperature (67.5 °C). The study showed that the bacterial strain was useful in the synthesis of AgNPs to enhance the efficient removal of contaminants in water samples, and that the model developed (2FI) using RSM technique was useful in predicting optimal TPH removal.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101057"},"PeriodicalIF":0.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143471416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wojciech Zgłobicki, Małgorzata Telecka, Paulina Hałas, Małgorzata Bis
{"title":"Impact of traffic and other sources on heavy metal pollution of urban soils (Lublin, Poland)","authors":"Wojciech Zgłobicki, Małgorzata Telecka, Paulina Hałas, Małgorzata Bis","doi":"10.1016/j.enmm.2025.101058","DOIUrl":"10.1016/j.enmm.2025.101058","url":null,"abstract":"<div><div>Information on the heavy metals content in urban soils is important for a comprehensive assessment of environmental pollution. A significant<!--> <!-->source of soil pollution can be traffic-related emissions. The objective of the study was to assess the spatial pattern, sources and level of soil pollution in medium-sized city (Lublin, E Poland). Concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn were determined in 62 samples of road dust and 90 soil samples. We applied<!--> <!-->following: geochemical indices to determine the degree of pollution: (i) geoaccumulation index, (ii) pollution index and (iii) index of ecological risk factor. PCA and CA were also used to assess sources of pollution. Geochemical indices showed<!--> <!-->medium to high pollution of dust and roadside soils<!--> <!-->by Cu and Zn and high for Cd, Cu and Zn in post-industrial soils. The results of the statistical analyses indicated the same pollution sources for road dust and roadside soils. It is represented by transport-related emissions. There is no statistical relationship between the concentration of heavy metals in road dust and roadside soil pollution due to the nature of their accumulation − long-lasting in the case of soils. The air transport of heavy metals is carried out over a short distance. Elevated concentrations are found near the sources of the pollutants. Residential soils are not polluted by heavy metals.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101058"},"PeriodicalIF":0.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md. Fahim Murshed, Nusrat Fardin Arpita, Amit Hasan Anik, Maisha Binte Sultan
{"title":"The hidden threat of microplastics in urban freshwater ecosystem: A comprehensive review","authors":"Md. Fahim Murshed, Nusrat Fardin Arpita, Amit Hasan Anik, Maisha Binte Sultan","doi":"10.1016/j.enmm.2025.101054","DOIUrl":"10.1016/j.enmm.2025.101054","url":null,"abstract":"<div><div>Microplastic (MP) pollution has become a pressing environmental issue, particularly in urban freshwater ecosystems, where it poses significant risks to water quality and public health. By integrating new data and insights, this article aims to deepen the understanding of MP contamination in urban freshwater ecosystems and its broader environmental implications. This article reviews the current literature of MPs focusing on urban freshwater ecosystems, often overlooked in favor of marine settings. It uniquely addresses the sources, pathways, and biomagnification of MPs in these environments, linking ecological effects to public health, and advocating for collaborative stakeholder action and innovative management strategies. This holistic approach provides a comprehensive view of MP pollution in urban contexts where aquatic organisms can ingest MPs present in these freshwater ecosystems and move through the food chain thus ultimately reaching the human body. The effects of MPs on the food chain are examined, particularly how they accumulate in organisms, transfer between different levels of the food chain, and increase in concentration as they move up through different trophic levels. To successfully tackle MP contamination, it pushes for collaborative action among stakeholders, including researchers, policymakers, and the community. It calls for enhanced research efforts to fill existing knowledge gaps and develop innovative management strategies to mitigate the impacts of MPs. Ultimately, this serves as a crucial resource for informing future policies and initiatives to preserve water quality and protect public health in the face of growing plastic pollution.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101054"},"PeriodicalIF":0.0,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abd El-Hakeim T. Kandil , Bahig M. Atia , Farida M.S.E. El-Dars , Mohamed Y.M. Hussein , Mohamed F. Cheira
{"title":"The prospect of using polyvinyl chloride with -n-hydroxyl amine, a metal binding agent, to adsorb uranium from its aqueous solution","authors":"Abd El-Hakeim T. Kandil , Bahig M. Atia , Farida M.S.E. El-Dars , Mohamed Y.M. Hussein , Mohamed F. Cheira","doi":"10.1016/j.enmm.2025.101055","DOIUrl":"10.1016/j.enmm.2025.101055","url":null,"abstract":"<div><div>Polyvinyl chloride-based N-hydroxyl amine (PVC-NHA) was demonstrated as a straightforward and innovative way to remove U(VI) from solutions. The PVC-NHA composite was exposed to exact testing using various techniques, including FT-IR, TGA, BET, <sup>1</sup>H NMR, SEM-EDX, <sup>13</sup>C NMR, and GC–MS assessments, all of which demonstrated the successful preparation of PVC-NHA. The specifications for this composite were accurately carried out, guaranteeing a good result. The optimization of various experimental parameters led to the refinement of measurements such as pH, temperature, agitation time, starting U(VI) concentration, interfering ions, PVC-NHA composite dose, and eluting agents. The optimization adjustments were gained at a temperature of 25 °C, a pH of 3.5, 15 min agitation time, and 0.63 × 10<sup>-3</sup> mol/L U(VI). The PVC-NHA composite exhibited an impressive maximum uptake capacity of 63 mg/g. This uptake capacity was equivalent to a remarkable 126 mg/L of U(VI) ions. The sorption isotherm modelling showed that Langmuir’s model fitted the practical results quite well, which was superior to the performance of the Freundlich model. The theoretical value obtained from Langmuir’s model is 61.7 mg/g, which closely supports the experimental rate of 63 mg/g. Based on U(VI) kinetic adsorption modelling, the adsorption reaction of U(VI) and PVC-NHA could be accurately illustrated by mixed pseudo-first and second-order kinetic modelling. According to thermodynamics, the adsorption process was spontaneous, exothermic, and highly favorable at tiny temperatures. Notably, the loaded composite could be efficiently eluted using 1 M H<sub>2</sub>SO<sub>4</sub>, achieving a remarkable 99 % efficiency rate from an economic standpoint. The PVC-NHA composite exposed excellent selectivity towards most interfering ions, demonstrating a high tolerance limit.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101055"},"PeriodicalIF":0.0,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Imran Khan Rind , Ahmet Sarı , Mustafa Tuzen , Muhammad Farooque Lanjwani , Tawfik A. Saleh
{"title":"Development of fly ash/melamine composites for crystal violate dye removal from aqueous media","authors":"Imran Khan Rind , Ahmet Sarı , Mustafa Tuzen , Muhammad Farooque Lanjwani , Tawfik A. Saleh","doi":"10.1016/j.enmm.2025.101056","DOIUrl":"10.1016/j.enmm.2025.101056","url":null,"abstract":"<div><div>Fly ash (FA) as a low-cost and easily obtainable by-product from thermal power plants is considered for the decontamination of inorganic and organic pollutants from wastewater. In this work, FA was grafted with melamine and the obtained composite was used for the adsorption of crystal violet (CV) from water. By modification of melamine, the surface of FA was enhanced with amide groups as effective binding groups for CV molecules and therefore achieved higher sorption capacity. The chemical and textural characteristics of the FA/Melamine composite were studied by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). Factorial designing was used for evaluating optimum adsorption parameters. ANOVA analysis of the P-value of individuals and combined variables was significant due to a P-value of less than 0.05 and a higher F-value. Equilibrium results show a monolayer isotherm model by Langmuir isotherm model with a maximum CV uptake capacity of 487 mg g<sup>−1</sup> under optimized conditions (250 mg adsorbent dosage, 10 ppm concentration, 30 min contact time and pH 6.0). Kinetic studies revealed that CV removal was nominated by the pseudo-second-order (PSO) model. CV dye molecules were adsorbed onto FA/Melamine composite via electrostatic attractions dipole–dipole interactions and n-π stacking interactions. Furthermore, the obtained results exposed that the synthesized FA/Melamine composite can be assessed as a promising sorbent for CV dye removal with high adsorption capacity.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101056"},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}