蛋壳废料作为纳米颗粒制备的可持续资源合成、表征及应用

Q1 Environmental Science
Eman Ayman Nada , Mallak Eyad Abu Kaddorah , Mazen El Jamal , Amal Hamad , Fotouh R. Mansour
{"title":"蛋壳废料作为纳米颗粒制备的可持续资源合成、表征及应用","authors":"Eman Ayman Nada ,&nbsp;Mallak Eyad Abu Kaddorah ,&nbsp;Mazen El Jamal ,&nbsp;Amal Hamad ,&nbsp;Fotouh R. Mansour","doi":"10.1016/j.enmm.2025.101092","DOIUrl":null,"url":null,"abstract":"<div><div>There has been substantial interest in using eggshell waste for the creation of environmentally-friendly products. This review discusses on the synthesis and examination of nanoparticles obtained from eggshells, with a particular focus on their suitability for usage in environmental and catalytic settings. Calcination and mechanical grinding are acknowledged as effective techniques for generating eggshell nanoparticles. Calcination is a high-temperature process that converts calcium carbonate (CaCO<sub>3</sub>) into calcium oxide (CaO). On the other hand, mechanical grinding is a method used to decrease the size of particles to the nanoscale. The text examines different methods employed for characterization, such as thermogravimetric analysis (TGA) for evaluating thermal stability, zeta potential for assessing surface charge and stability, X-ray diffraction (XRD) for identifying crystal structure, Fourier transform infrared (FTIR) spectroscopy for detecting functional groups, energy-dispersive X-ray (EDX) spectroscopy for determining elemental composition, dynamic light scattering (DLS) for analyzing particle size distribution, and atomic force microscopy (AFM) for visualizing surface morphology. The produced nano-hydroxyapatite shows promise as an adsorbent for effectively eliminating arsenic and heavy metals from water systems, hence contributing to sustainable waste management and advancements in materials. This work offers a thorough comprehension of the procedure involved in producing and examining eggshell nanoparticles. Acquiring this information is crucial for effectively utilizing them in environmental remediation and catalytic processes.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101092"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eggshell waste as a sustainable resource for nanoparticle preparation; synthesis, characterization and applications\",\"authors\":\"Eman Ayman Nada ,&nbsp;Mallak Eyad Abu Kaddorah ,&nbsp;Mazen El Jamal ,&nbsp;Amal Hamad ,&nbsp;Fotouh R. Mansour\",\"doi\":\"10.1016/j.enmm.2025.101092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There has been substantial interest in using eggshell waste for the creation of environmentally-friendly products. This review discusses on the synthesis and examination of nanoparticles obtained from eggshells, with a particular focus on their suitability for usage in environmental and catalytic settings. Calcination and mechanical grinding are acknowledged as effective techniques for generating eggshell nanoparticles. Calcination is a high-temperature process that converts calcium carbonate (CaCO<sub>3</sub>) into calcium oxide (CaO). On the other hand, mechanical grinding is a method used to decrease the size of particles to the nanoscale. The text examines different methods employed for characterization, such as thermogravimetric analysis (TGA) for evaluating thermal stability, zeta potential for assessing surface charge and stability, X-ray diffraction (XRD) for identifying crystal structure, Fourier transform infrared (FTIR) spectroscopy for detecting functional groups, energy-dispersive X-ray (EDX) spectroscopy for determining elemental composition, dynamic light scattering (DLS) for analyzing particle size distribution, and atomic force microscopy (AFM) for visualizing surface morphology. The produced nano-hydroxyapatite shows promise as an adsorbent for effectively eliminating arsenic and heavy metals from water systems, hence contributing to sustainable waste management and advancements in materials. This work offers a thorough comprehension of the procedure involved in producing and examining eggshell nanoparticles. Acquiring this information is crucial for effectively utilizing them in environmental remediation and catalytic processes.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"24 \",\"pages\":\"Article 101092\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153225000534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

人们对利用蛋壳废料制造环保产品非常感兴趣。这篇综述讨论了从蛋壳中获得的纳米颗粒的合成和检测,特别关注了它们在环境和催化环境中的适用性。煅烧和机械研磨是制备蛋壳纳米颗粒的有效技术。煅烧是将碳酸钙(CaCO3)转化为氧化钙(CaO)的高温过程。另一方面,机械研磨是一种用于将颗粒尺寸减小到纳米级的方法。本文考察了用于表征的不同方法,例如用于评估热稳定性的热重分析(TGA),用于评估表面电荷和稳定性的zeta电位,用于识别晶体结构的x射线衍射(XRD),用于检测官能团的傅里叶变换红外(FTIR)光谱,用于确定元素组成的能量色散x射线(EDX)光谱,用于分析粒度分布的动态光散射(DLS),原子力显微镜(AFM)用于表面形貌的可视化。制备的纳米羟基磷灰石有望作为一种吸附剂,有效地消除水系统中的砷和重金属,从而有助于可持续废物管理和材料的进步。这项工作提供了生产和检查蛋壳纳米粒子所涉及的程序的透彻理解。获取这些信息对于在环境修复和催化过程中有效利用它们至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eggshell waste as a sustainable resource for nanoparticle preparation; synthesis, characterization and applications

Eggshell waste as a sustainable resource for nanoparticle preparation; synthesis, characterization and applications
There has been substantial interest in using eggshell waste for the creation of environmentally-friendly products. This review discusses on the synthesis and examination of nanoparticles obtained from eggshells, with a particular focus on their suitability for usage in environmental and catalytic settings. Calcination and mechanical grinding are acknowledged as effective techniques for generating eggshell nanoparticles. Calcination is a high-temperature process that converts calcium carbonate (CaCO3) into calcium oxide (CaO). On the other hand, mechanical grinding is a method used to decrease the size of particles to the nanoscale. The text examines different methods employed for characterization, such as thermogravimetric analysis (TGA) for evaluating thermal stability, zeta potential for assessing surface charge and stability, X-ray diffraction (XRD) for identifying crystal structure, Fourier transform infrared (FTIR) spectroscopy for detecting functional groups, energy-dispersive X-ray (EDX) spectroscopy for determining elemental composition, dynamic light scattering (DLS) for analyzing particle size distribution, and atomic force microscopy (AFM) for visualizing surface morphology. The produced nano-hydroxyapatite shows promise as an adsorbent for effectively eliminating arsenic and heavy metals from water systems, hence contributing to sustainable waste management and advancements in materials. This work offers a thorough comprehension of the procedure involved in producing and examining eggshell nanoparticles. Acquiring this information is crucial for effectively utilizing them in environmental remediation and catalytic processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信