Nina Doskocz, Katarzyna Affek, Monika Załęska-Radziwiłł
{"title":"氧化铝纳米颗粒对序批式反应器中活性污泥性能的长期影响","authors":"Nina Doskocz, Katarzyna Affek, Monika Załęska-Radziwiłł","doi":"10.1016/j.enmm.2025.101096","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoparticles (NPs) have raised global concerns due to their extensive use and detrimental impacts on ecosystems. While wastewater treatment plants (WWTPs) are viewed as potential sources of nanocompounds in the environment, the influence of aluminum oxide nanoparticles (Al<sub>2</sub>O<sub>3</sub>NPs) on wastewater treatment remains uncertain. This study aimed to explore the long-term effects of wastewater-borne Al<sub>2</sub>O<sub>3</sub>NPs and their bulk counterparts on the effectiveness of pollutant removal within sequencing batch reactors (SBRs), activated sludge performance, internal biological activity/viability, and microbial community diversity and structure. The presence of Al<sub>2</sub>O<sub>3</sub>NPs was observed to induce alterations in the removal efficiency of COD, <span><math><mrow><msubsup><mrow><mi>N</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow><mo>+</mo></msubsup><mo>-</mo></mrow></math></span> N, and SOP from wastewater, as well as impacting the nitrification process during prolonged exposure. Al<sub>2</sub>O<sub>3</sub>NPs in wastewater accumulated in the sludge, affecting its morphology and diminishing microbial viability and biological activity. Additionally, high throughput sequencing of 16S rRNA indicated that Al<sub>2</sub>O<sub>3</sub>NPs could impact on the microbial richness and diversity of activated sludge in the SBR. In contrast, wastewater containing bulk counterparts did not negatively influence the capacity of wastewater treatment plants. This research provides novel and crucial insights into the effects of Al<sub>2</sub>O<sub>3</sub>NPs on the biological wastewater treatment process, holding significance for risk assessment procedures.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"24 ","pages":"Article 101096"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term effect of aluminum oxide nanoparticles on activated sludge performance in sequencing batch reactors\",\"authors\":\"Nina Doskocz, Katarzyna Affek, Monika Załęska-Radziwiłł\",\"doi\":\"10.1016/j.enmm.2025.101096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanoparticles (NPs) have raised global concerns due to their extensive use and detrimental impacts on ecosystems. While wastewater treatment plants (WWTPs) are viewed as potential sources of nanocompounds in the environment, the influence of aluminum oxide nanoparticles (Al<sub>2</sub>O<sub>3</sub>NPs) on wastewater treatment remains uncertain. This study aimed to explore the long-term effects of wastewater-borne Al<sub>2</sub>O<sub>3</sub>NPs and their bulk counterparts on the effectiveness of pollutant removal within sequencing batch reactors (SBRs), activated sludge performance, internal biological activity/viability, and microbial community diversity and structure. The presence of Al<sub>2</sub>O<sub>3</sub>NPs was observed to induce alterations in the removal efficiency of COD, <span><math><mrow><msubsup><mrow><mi>N</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow><mo>+</mo></msubsup><mo>-</mo></mrow></math></span> N, and SOP from wastewater, as well as impacting the nitrification process during prolonged exposure. Al<sub>2</sub>O<sub>3</sub>NPs in wastewater accumulated in the sludge, affecting its morphology and diminishing microbial viability and biological activity. Additionally, high throughput sequencing of 16S rRNA indicated that Al<sub>2</sub>O<sub>3</sub>NPs could impact on the microbial richness and diversity of activated sludge in the SBR. In contrast, wastewater containing bulk counterparts did not negatively influence the capacity of wastewater treatment plants. This research provides novel and crucial insights into the effects of Al<sub>2</sub>O<sub>3</sub>NPs on the biological wastewater treatment process, holding significance for risk assessment procedures.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"24 \",\"pages\":\"Article 101096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153225000571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Long-term effect of aluminum oxide nanoparticles on activated sludge performance in sequencing batch reactors
Nanoparticles (NPs) have raised global concerns due to their extensive use and detrimental impacts on ecosystems. While wastewater treatment plants (WWTPs) are viewed as potential sources of nanocompounds in the environment, the influence of aluminum oxide nanoparticles (Al2O3NPs) on wastewater treatment remains uncertain. This study aimed to explore the long-term effects of wastewater-borne Al2O3NPs and their bulk counterparts on the effectiveness of pollutant removal within sequencing batch reactors (SBRs), activated sludge performance, internal biological activity/viability, and microbial community diversity and structure. The presence of Al2O3NPs was observed to induce alterations in the removal efficiency of COD, N, and SOP from wastewater, as well as impacting the nitrification process during prolonged exposure. Al2O3NPs in wastewater accumulated in the sludge, affecting its morphology and diminishing microbial viability and biological activity. Additionally, high throughput sequencing of 16S rRNA indicated that Al2O3NPs could impact on the microbial richness and diversity of activated sludge in the SBR. In contrast, wastewater containing bulk counterparts did not negatively influence the capacity of wastewater treatment plants. This research provides novel and crucial insights into the effects of Al2O3NPs on the biological wastewater treatment process, holding significance for risk assessment procedures.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation