{"title":"Nanoparticle based antigen detection of norovirus in human faecal samples: A proof-of-concept study","authors":"Rishi Pandey , Pradip Gyawali , Mark A.T. Blaskovich , Sanjaya K.C.","doi":"10.1016/j.enmm.2025.101064","DOIUrl":null,"url":null,"abstract":"<div><div>Immunocapture assays that are fast, affordable, and can be utilised as on-site sensors for detecting pathogens or their biomarkers hold great value for ensuring public health and food safety. As proof of concept, a magnetic immunocapture assay was developed to detect norovirus. Acommercially available monoclonal antibody capable of capturing both norovirus genogroup I and II (GI and GII) was conjugated to the magnetic nanoparticles (MNPs) for capture and sequestration of norovirus GI and GII under laboratory conditions. The capability of the functionalised MNPs to capture norovirus from the faecal extract was determined by reverse transcription-qPCR. The capture efficiency of MNPs was >90 % for both genogroups of noroviruses. To complement the magnetic capture and enable rapid detection and genogroup identification, two different monoclonal antibodies specific to genogroups GI and GII were conjugated onto a fluorescent nanoparticle surface, and then used to quantify captured norovirus in a ‘sandwich’ assay. Replicate faecal extract suspensions containing 10<sup>3</sup> gene copies of norovirus GI and GII per µL were tested with the magnetic capture-fluorescence detection assay platform, with quantification of fluorescent intensity. The fluorescent particle assay for the detection of the biomarkers matched the sensitivity of qPCR. This method doesn’t require any sample preparation steps like nucleic acid extraction and can be easily converted into a rapid point of need detection system. This dual nanoparticle system holds promise as an inexpensive and reliable analytical tool for classical qualitative immunoassays that are prone to false positives.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101064"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221515322500025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Immunocapture assays that are fast, affordable, and can be utilised as on-site sensors for detecting pathogens or their biomarkers hold great value for ensuring public health and food safety. As proof of concept, a magnetic immunocapture assay was developed to detect norovirus. Acommercially available monoclonal antibody capable of capturing both norovirus genogroup I and II (GI and GII) was conjugated to the magnetic nanoparticles (MNPs) for capture and sequestration of norovirus GI and GII under laboratory conditions. The capability of the functionalised MNPs to capture norovirus from the faecal extract was determined by reverse transcription-qPCR. The capture efficiency of MNPs was >90 % for both genogroups of noroviruses. To complement the magnetic capture and enable rapid detection and genogroup identification, two different monoclonal antibodies specific to genogroups GI and GII were conjugated onto a fluorescent nanoparticle surface, and then used to quantify captured norovirus in a ‘sandwich’ assay. Replicate faecal extract suspensions containing 103 gene copies of norovirus GI and GII per µL were tested with the magnetic capture-fluorescence detection assay platform, with quantification of fluorescent intensity. The fluorescent particle assay for the detection of the biomarkers matched the sensitivity of qPCR. This method doesn’t require any sample preparation steps like nucleic acid extraction and can be easily converted into a rapid point of need detection system. This dual nanoparticle system holds promise as an inexpensive and reliable analytical tool for classical qualitative immunoassays that are prone to false positives.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation