地表水和沉积物中的丁草胺污染:评估加纳北部地区Bontanga灌溉计划的人类健康、生态风险和环境影响

Q1 Environmental Science
Mohammed Alhassan, Gerheart Winfred Ashong, Boansi Adu Ababio, Edward Ebow Kwaansa–Ansah
{"title":"地表水和沉积物中的丁草胺污染:评估加纳北部地区Bontanga灌溉计划的人类健康、生态风险和环境影响","authors":"Mohammed Alhassan,&nbsp;Gerheart Winfred Ashong,&nbsp;Boansi Adu Ababio,&nbsp;Edward Ebow Kwaansa–Ansah","doi":"10.1016/j.enmm.2025.101073","DOIUrl":null,"url":null,"abstract":"<div><div>The Bontanga Irrigation Scheme in Ghana’s Kumbungu District, vital for local agriculture, faces significant ecological and health risks from Butachlor, an herbicide used in rice plantations. This study aimed to evaluate the physicochemical parameters of surface water, measure Butachlor concentrations in surface water and sediment, assess ecological risks, and estimate human health effects. A total of 100 water samples, 50 sediment samples were collected, and 50 farmers were interviewed about pesticide use. Physicochemical parameters such as pH, total dissolved solids, electrical conductivity, temperature, and turbidity were measured using standard analytical methods. Butachlor levels in surface water and sediment were determined using gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass spectrometry (LC-MS). Results indicated that all physicochemical parameters in the water samples were within WHO limits. However, Butachlor concentrations ranged from 4.74 µg/L to 118.85 µg/L, exceeding the EFSA threshold of 0.5 µg/L, while sediment samples were below the detection limit of 0.01 mg/L. The toxic unit (TU) method revealed a medium acute risk to algae (0.28) and fish (0.13) and a low acute risk to aquatic invertebrates (0.02). The risk quotient (RQ) method indicated a high chronic risk to aquatic biota in surface water, though the non-carcinogenic health risk (HQ) to humans was minimal (HQ &lt; 1). Butachlor residues may pose significant health risks, including neurological, respiratory, and reproductive disorders. This study recommends implementing Integrated Pesticide Management policies, developing pest-resistant plant species, proper disposal of pesticide containers, and educating farmers on pesticide usage. Future research should focus on Butachlor’s long-term effects on aquatic biota, alternative pest control strategies, and measures to reduce residues, protecting both wildlife and human health.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101073"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Butachlor contamination in surface water and sediment: Assessing human health, ecological risks, and environmental implications of the Bontanga irrigation scheme in the Northern region of Ghana\",\"authors\":\"Mohammed Alhassan,&nbsp;Gerheart Winfred Ashong,&nbsp;Boansi Adu Ababio,&nbsp;Edward Ebow Kwaansa–Ansah\",\"doi\":\"10.1016/j.enmm.2025.101073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Bontanga Irrigation Scheme in Ghana’s Kumbungu District, vital for local agriculture, faces significant ecological and health risks from Butachlor, an herbicide used in rice plantations. This study aimed to evaluate the physicochemical parameters of surface water, measure Butachlor concentrations in surface water and sediment, assess ecological risks, and estimate human health effects. A total of 100 water samples, 50 sediment samples were collected, and 50 farmers were interviewed about pesticide use. Physicochemical parameters such as pH, total dissolved solids, electrical conductivity, temperature, and turbidity were measured using standard analytical methods. Butachlor levels in surface water and sediment were determined using gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass spectrometry (LC-MS). Results indicated that all physicochemical parameters in the water samples were within WHO limits. However, Butachlor concentrations ranged from 4.74 µg/L to 118.85 µg/L, exceeding the EFSA threshold of 0.5 µg/L, while sediment samples were below the detection limit of 0.01 mg/L. The toxic unit (TU) method revealed a medium acute risk to algae (0.28) and fish (0.13) and a low acute risk to aquatic invertebrates (0.02). The risk quotient (RQ) method indicated a high chronic risk to aquatic biota in surface water, though the non-carcinogenic health risk (HQ) to humans was minimal (HQ &lt; 1). Butachlor residues may pose significant health risks, including neurological, respiratory, and reproductive disorders. This study recommends implementing Integrated Pesticide Management policies, developing pest-resistant plant species, proper disposal of pesticide containers, and educating farmers on pesticide usage. Future research should focus on Butachlor’s long-term effects on aquatic biota, alternative pest control strategies, and measures to reduce residues, protecting both wildlife and human health.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"23 \",\"pages\":\"Article 101073\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153225000340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

加纳Kumbungu区的Bontanga灌溉计划对当地农业至关重要,但却面临水稻种植中使用的除草剂buachlor带来的重大生态和健康风险。本研究旨在评估地表水的理化参数,测量地表水和沉积物中丁草胺的浓度,评估生态风险,评估对人体健康的影响。共采集水样100份,沉积物样50份,并对50名农民进行农药使用情况访谈。物理化学参数,如pH值,总溶解固体,电导率,温度和浊度使用标准分析方法进行测量。采用气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)测定了地表水和沉积物中丁草胺的含量。结果表明,水样理化指标均在WHO标准范围内。然而,丁草胺的浓度范围在4.74µg/L至118.85µg/L之间,超过了欧洲食品安全局0.5µg/L的阈值,而沉积物样品低于0.01 mg/L的检出限。毒性单位(TU)法显示,藻类(0.28)和鱼类(0.13)的急性风险中等,水生无脊椎动物(0.02)的急性风险较低。风险商(RQ)法显示地表水对水生生物群的慢性风险很高,但对人类的非致癌健康风险(HQ)很小(HQ <;1).丁草胺残留可能造成重大健康风险,包括神经、呼吸和生殖障碍。本研究建议实施农药综合管理政策,开发抗虫植物品种,妥善处理农药容器,并对农民进行农药使用教育。未来的研究应侧重于丁草胺对水生生物群的长期影响、替代虫害防治策略以及减少残留的措施,以保护野生动物和人类健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Butachlor contamination in surface water and sediment: Assessing human health, ecological risks, and environmental implications of the Bontanga irrigation scheme in the Northern region of Ghana

Butachlor contamination in surface water and sediment: Assessing human health, ecological risks, and environmental implications of the Bontanga irrigation scheme in the Northern region of Ghana
The Bontanga Irrigation Scheme in Ghana’s Kumbungu District, vital for local agriculture, faces significant ecological and health risks from Butachlor, an herbicide used in rice plantations. This study aimed to evaluate the physicochemical parameters of surface water, measure Butachlor concentrations in surface water and sediment, assess ecological risks, and estimate human health effects. A total of 100 water samples, 50 sediment samples were collected, and 50 farmers were interviewed about pesticide use. Physicochemical parameters such as pH, total dissolved solids, electrical conductivity, temperature, and turbidity were measured using standard analytical methods. Butachlor levels in surface water and sediment were determined using gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass spectrometry (LC-MS). Results indicated that all physicochemical parameters in the water samples were within WHO limits. However, Butachlor concentrations ranged from 4.74 µg/L to 118.85 µg/L, exceeding the EFSA threshold of 0.5 µg/L, while sediment samples were below the detection limit of 0.01 mg/L. The toxic unit (TU) method revealed a medium acute risk to algae (0.28) and fish (0.13) and a low acute risk to aquatic invertebrates (0.02). The risk quotient (RQ) method indicated a high chronic risk to aquatic biota in surface water, though the non-carcinogenic health risk (HQ) to humans was minimal (HQ < 1). Butachlor residues may pose significant health risks, including neurological, respiratory, and reproductive disorders. This study recommends implementing Integrated Pesticide Management policies, developing pest-resistant plant species, proper disposal of pesticide containers, and educating farmers on pesticide usage. Future research should focus on Butachlor’s long-term effects on aquatic biota, alternative pest control strategies, and measures to reduce residues, protecting both wildlife and human health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信