Butachlor contamination in surface water and sediment: Assessing human health, ecological risks, and environmental implications of the Bontanga irrigation scheme in the Northern region of Ghana
Mohammed Alhassan, Gerheart Winfred Ashong, Boansi Adu Ababio, Edward Ebow Kwaansa–Ansah
{"title":"Butachlor contamination in surface water and sediment: Assessing human health, ecological risks, and environmental implications of the Bontanga irrigation scheme in the Northern region of Ghana","authors":"Mohammed Alhassan, Gerheart Winfred Ashong, Boansi Adu Ababio, Edward Ebow Kwaansa–Ansah","doi":"10.1016/j.enmm.2025.101073","DOIUrl":null,"url":null,"abstract":"<div><div>The Bontanga Irrigation Scheme in Ghana’s Kumbungu District, vital for local agriculture, faces significant ecological and health risks from Butachlor, an herbicide used in rice plantations. This study aimed to evaluate the physicochemical parameters of surface water, measure Butachlor concentrations in surface water and sediment, assess ecological risks, and estimate human health effects. A total of 100 water samples, 50 sediment samples were collected, and 50 farmers were interviewed about pesticide use. Physicochemical parameters such as pH, total dissolved solids, electrical conductivity, temperature, and turbidity were measured using standard analytical methods. Butachlor levels in surface water and sediment were determined using gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass spectrometry (LC-MS). Results indicated that all physicochemical parameters in the water samples were within WHO limits. However, Butachlor concentrations ranged from 4.74 µg/L to 118.85 µg/L, exceeding the EFSA threshold of 0.5 µg/L, while sediment samples were below the detection limit of 0.01 mg/L. The toxic unit (TU) method revealed a medium acute risk to algae (0.28) and fish (0.13) and a low acute risk to aquatic invertebrates (0.02). The risk quotient (RQ) method indicated a high chronic risk to aquatic biota in surface water, though the non-carcinogenic health risk (HQ) to humans was minimal (HQ < 1). Butachlor residues may pose significant health risks, including neurological, respiratory, and reproductive disorders. This study recommends implementing Integrated Pesticide Management policies, developing pest-resistant plant species, proper disposal of pesticide containers, and educating farmers on pesticide usage. Future research should focus on Butachlor’s long-term effects on aquatic biota, alternative pest control strategies, and measures to reduce residues, protecting both wildlife and human health.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101073"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The Bontanga Irrigation Scheme in Ghana’s Kumbungu District, vital for local agriculture, faces significant ecological and health risks from Butachlor, an herbicide used in rice plantations. This study aimed to evaluate the physicochemical parameters of surface water, measure Butachlor concentrations in surface water and sediment, assess ecological risks, and estimate human health effects. A total of 100 water samples, 50 sediment samples were collected, and 50 farmers were interviewed about pesticide use. Physicochemical parameters such as pH, total dissolved solids, electrical conductivity, temperature, and turbidity were measured using standard analytical methods. Butachlor levels in surface water and sediment were determined using gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass spectrometry (LC-MS). Results indicated that all physicochemical parameters in the water samples were within WHO limits. However, Butachlor concentrations ranged from 4.74 µg/L to 118.85 µg/L, exceeding the EFSA threshold of 0.5 µg/L, while sediment samples were below the detection limit of 0.01 mg/L. The toxic unit (TU) method revealed a medium acute risk to algae (0.28) and fish (0.13) and a low acute risk to aquatic invertebrates (0.02). The risk quotient (RQ) method indicated a high chronic risk to aquatic biota in surface water, though the non-carcinogenic health risk (HQ) to humans was minimal (HQ < 1). Butachlor residues may pose significant health risks, including neurological, respiratory, and reproductive disorders. This study recommends implementing Integrated Pesticide Management policies, developing pest-resistant plant species, proper disposal of pesticide containers, and educating farmers on pesticide usage. Future research should focus on Butachlor’s long-term effects on aquatic biota, alternative pest control strategies, and measures to reduce residues, protecting both wildlife and human health.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation