{"title":"Nano-Chitosan coated sand: A sustainable superadsorbent for removal of heavy metals and dye particles from industrial effluents","authors":"Md. Nuruzzaman, Md. Ibrahim H. Mondal","doi":"10.1016/j.enmm.2025.101076","DOIUrl":null,"url":null,"abstract":"<div><div>Nano-chitosan-coated sand adsorbent was prepared by coating chitosan nanoparticles onto treated Padma River sand. CNPs were produced through the application of ionotropic gelation methodology. The effects of parameters such as pHs, adsorbent dosages, contact times, initial dye concentrations, and temperatures were examined on the maximum adsorption capacity. The maximum adsorption capacities of brilliant green, methylene blue, reactive brown dyes, chromium, and nickel heavy metal ions by NCCS were observed at a temperature of 318 K, which were 5.001 mg/g, 8.012 mg/g, 6.386 mg/g, 48.387 mg/g, and 24.258 mg/g, respectively. The adsorption process conformed to the Langmuir adsorption isotherm, indicating that the adsorption was monolayer. The adsorption process was spontaneous and endothermic across the temperature ranges. As the reaction kinetics analysis indicated, the adsorption process followed a pseudo-second-order kinetic model. The adsorption capacity of NCCS is exceptionally high, allowing for the effective capture and removal of a diverse array of heavy metals and dyes from aqueous solutions, consequently contributing to the advancement of environmental remediation and pollution abatement initiatives.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101076"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Nano-chitosan-coated sand adsorbent was prepared by coating chitosan nanoparticles onto treated Padma River sand. CNPs were produced through the application of ionotropic gelation methodology. The effects of parameters such as pHs, adsorbent dosages, contact times, initial dye concentrations, and temperatures were examined on the maximum adsorption capacity. The maximum adsorption capacities of brilliant green, methylene blue, reactive brown dyes, chromium, and nickel heavy metal ions by NCCS were observed at a temperature of 318 K, which were 5.001 mg/g, 8.012 mg/g, 6.386 mg/g, 48.387 mg/g, and 24.258 mg/g, respectively. The adsorption process conformed to the Langmuir adsorption isotherm, indicating that the adsorption was monolayer. The adsorption process was spontaneous and endothermic across the temperature ranges. As the reaction kinetics analysis indicated, the adsorption process followed a pseudo-second-order kinetic model. The adsorption capacity of NCCS is exceptionally high, allowing for the effective capture and removal of a diverse array of heavy metals and dyes from aqueous solutions, consequently contributing to the advancement of environmental remediation and pollution abatement initiatives.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation