Deliza , Sri Lungguh Rahayu , Agus Rimus Liandi , Reza Audina Putri , Safni Safni
{"title":"Green synthesis approach on fabrication of TiO2 nanoparticle using peel extract of Baccaurea racemosa for photocatalytic degradation of Acid Red-185","authors":"Deliza , Sri Lungguh Rahayu , Agus Rimus Liandi , Reza Audina Putri , Safni Safni","doi":"10.1016/j.enmm.2025.101074","DOIUrl":null,"url":null,"abstract":"<div><div>When it comes to fabricating metal oxide nanoparticles (NPs), green synthesis stands out as a dependable, sustainable, eco-friendly, and remarkable substitute for the more effective and classical chemical processes. This study prepared and investigated green synthesis on fabrication of titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) utilizing peel extract of <em>Baccaurea racemosa</em> and evaluated its photocatalytic activity. The XRD patterns demonstrated the highly crystalline structure of anatase TiO<sub>2</sub> with nanocrystallite size obtained about 8 nm. FESEM image confirmed spherical-shaped of TiO<sub>2</sub> with nanosized about 32 nm and showed that prepared TiO<sub>2</sub> was a stable particle from zeta potential data. The phytochemical components in the peel extract were in responsibility of the capping and reducing agents in the production of TiO<sub>2</sub>, as indicated by the FTIR spectra. This study showed that <em>Baccaurea racemosa</em> waste may be a viable reducing and capping agent in synthesis of TiO<sub>2</sub>-NPs. Furthermore, the prepared TiO<sub>2</sub> exhibited high photocatalytic activity and 99 % degraded the Acid Red-185 dye which fitted pseudo first order kinetics.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101074"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
When it comes to fabricating metal oxide nanoparticles (NPs), green synthesis stands out as a dependable, sustainable, eco-friendly, and remarkable substitute for the more effective and classical chemical processes. This study prepared and investigated green synthesis on fabrication of titanium dioxide nanoparticles (TiO2 NPs) utilizing peel extract of Baccaurea racemosa and evaluated its photocatalytic activity. The XRD patterns demonstrated the highly crystalline structure of anatase TiO2 with nanocrystallite size obtained about 8 nm. FESEM image confirmed spherical-shaped of TiO2 with nanosized about 32 nm and showed that prepared TiO2 was a stable particle from zeta potential data. The phytochemical components in the peel extract were in responsibility of the capping and reducing agents in the production of TiO2, as indicated by the FTIR spectra. This study showed that Baccaurea racemosa waste may be a viable reducing and capping agent in synthesis of TiO2-NPs. Furthermore, the prepared TiO2 exhibited high photocatalytic activity and 99 % degraded the Acid Red-185 dye which fitted pseudo first order kinetics.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation