ELECTROPHORESIS最新文献

筛选
英文 中文
Performance optimization of a DLD microfluidic device for separating deformable CTCs 用于分离可变形 CTC 的 DLD 微流体设备的性能优化。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-08-14 DOI: 10.1002/elps.202400136
Roya Mohammadali, Morteza Bayareh, Afshin Ahmadi Nadooshan
{"title":"Performance optimization of a DLD microfluidic device for separating deformable CTCs","authors":"Roya Mohammadali,&nbsp;Morteza Bayareh,&nbsp;Afshin Ahmadi Nadooshan","doi":"10.1002/elps.202400136","DOIUrl":"10.1002/elps.202400136","url":null,"abstract":"<p>Deterministic lateral displacement (DLD) microfluidic devices work based on the streamlines created by an array of micro-posts. The configuration of pillars alters the isolation efficiency of these devices. The present paper optimizes the performance of a DLD device for isolating deformable circulating tumor cells. The input variables include cell diameter (<i>d</i>), Young's modulus (<span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>s</mi>\u0000 </msub>\u0000 <annotation>${E}_s$</annotation>\u0000 </semantics></math>), Reynolds number (<i>R<sub>e</sub></i>), and tan <i>θ</i>, where <i>θ</i> is the tilted angle of micro-posts. The output, which is the response of the system, is DLD. The numerical simulation results are employed to optimize the device using the response surface method, leading to the proposition of a correlation to estimate DLD as a function of input variables. It is demonstrated that the maximum and minimum impacts on cell lateral displacement correspond to <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>s</mi>\u0000 </msub>\u0000 <annotation>${E}_s$</annotation>\u0000 </semantics></math> and <i>R<sub>e</sub></i>, respectively.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-free detection of ConA-induced T-lymphocyte activation at single-cell level by microfluidics. 利用微流体技术在单细胞水平对 ConA 诱导的 T 淋巴细胞活化进行无标记检测。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-08-09 DOI: 10.1002/elps.202400060
Yameng Liu, Xiaohu Wang, Yuxia Lan
{"title":"Label-free detection of ConA-induced T-lymphocyte activation at single-cell level by microfluidics.","authors":"Yameng Liu, Xiaohu Wang, Yuxia Lan","doi":"10.1002/elps.202400060","DOIUrl":"https://doi.org/10.1002/elps.202400060","url":null,"abstract":"<p><p>Lymphocyte activation is critical in regulating immune responses. The resulting T-cell proliferation has been implicated in the pathogenesis of a variety of autoimmune diseases, such as SLE and rheumatoid arthritis. ConA (concanavalin A)-induced activation has been widely used in the T lymphocytes model of immune-mediated liver injury, autoimmune hepatitis, and so on. In those works, it usually requires fluorescent labeling or cell staining to confirm whether the cells are transformed successfully after medicine treatment to figure out efficacy/pharmacology. The detection preparation steps are time-consuming and have limitations for further proteomic/genomic identifications. Here, a label-free microfluidic method is established to detect lymphocyte activation degree. The lymphocyte and ConA-activated lymphocyte were investigated by a microfluidic device. According to where single cells in the sample were captured in the designed channel, lymphocyte and ConA-activated samples are differentiated and characterized by population electric field factors, 2.08 × 10<sup>4</sup> and 2.21 × 10<sup>4</sup> V/m, respectively. Furthermore, salidroside, a herbal medicine that was documented to promote the transformation, was used to treat lymphocyte cells, and the treated cell population is detected to be 2.67 × 10<sup>4</sup> V/m. The characterization indicates an increasing trend with the activation degree. The result maintains a high consistency with traditional staining methods with transformed cells of 15.8%, 28.8%, and 48.3% in each cell population. Dielectrophoresis is promising to work as a tool for detecting lymphocyte transformation and medical efficacy detection.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of SNaPshot and massively parallel sequencing for body fluid–specific DNA methylation markers 体液特异性 DNA 甲基化标记的 SNaPshot 和大规模平行测序比较分析。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-08-09 DOI: 10.1002/elps.202400037
Bo Min Kim, Sang Un Park, Hwan Young Lee
{"title":"Comparative analysis of SNaPshot and massively parallel sequencing for body fluid–specific DNA methylation markers","authors":"Bo Min Kim,&nbsp;Sang Un Park,&nbsp;Hwan Young Lee","doi":"10.1002/elps.202400037","DOIUrl":"10.1002/elps.202400037","url":null,"abstract":"<p>The identification of tissue-specific differentially methylated regions has significantly contributed to the field of forensic genetics, particularly in body fluid identification crucial for linking evidence to crimes. Among the various approaches to analyzing DNA methylation, the SNaPshot assay has been popularly studied in numerous researches. However, there is a growing interest in exploring alternative methods such as the use of massively parallel sequencing (MPS), which can process a large number of samples simultaneously. This study compares SNaPshot and MPS multiplex assays using nine cytosine-phosphate-guanine markers for body fluid identification. As a result of analyzing 112 samples, including blood, saliva, vaginal fluid, menstrual blood, and semen, both methods demonstrated high sensitivity and specificity, indicating their reliability in forensic investigations. A total of 92.0% samples were correctly identified by both methods. Although both methods accurately identified all blood, saliva, and semen samples, some vaginal fluid samples showed unexpected methylation signals at nontarget loci in addition to the target loci. In the case of menstrual blood samples, due to their complexity, independent typing criteria were applied, and successful menstrual blood typing was possible, whereas a few samples showed profiles similar to vaginal fluid. The MPS method worked better in vaginal fluid samples, and the SNaPshot method performed better in menstrual blood samples. This study offers valuable insights into body fluid identification based on the characteristics of the SNaPshot and MPS methods, which may help in more efficient forensic applications.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A brief history and future directions of dielectrophoretic filtration: A review. 介质电泳过滤的简史和未来方向:综述。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-08-09 DOI: 10.1002/elps.202400116
Mary Clare O'Donnell, Mariia Kepper, Georg R Pesch
{"title":"A brief history and future directions of dielectrophoretic filtration: A review.","authors":"Mary Clare O'Donnell, Mariia Kepper, Georg R Pesch","doi":"10.1002/elps.202400116","DOIUrl":"https://doi.org/10.1002/elps.202400116","url":null,"abstract":"<p><p>Dielectrophoresis (DEP) is an electrokinetic effect first studied in the early 20th century. Since then, DEP has gained significant interest in research, owing to its ability to solve particle separation problems in various industries. Dielectrophoretic filtration (DEP filtration) is a separation method using DEP to filter a wide range of microparticles, from bacterial cells to catalytic particles. DEP filtration can selectively separate particles based on size or dielectric properties, recover trapped particles and avoid common problems associated with mechanical filtration based on pore size (e.g. pressure drops and regular filter replacements). This review describes the simple beginnings of DEP filtration and how our understanding and applications for DEP filtration have progressed over time. A brief section of DEP theory as well as a note on the general outlook for DEP filtration in the future is presented. DEP filtration offers an exciting opportunity to selectively separate diverse particle mixtures. To achieve such a feat, technical challenges such as Joule Heating and low throughputs must be addressed.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-term impact of vitamin K2 supplementation on biochemical parameters and lipoprotein fractions. 维生素 K2 补充剂对生化指标和脂蛋白组分的短期影响。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-08-02 DOI: 10.1002/elps.202400058
Milos Barna, Katerina Dunovska, Jana Cepova, Julia Werle, Richard Prusa, Geir Bjørklud, Pavel Melichercik, Rene Kizek, Eva Klapkova
{"title":"Short-term impact of vitamin K2 supplementation on biochemical parameters and lipoprotein fractions.","authors":"Milos Barna, Katerina Dunovska, Jana Cepova, Julia Werle, Richard Prusa, Geir Bjørklud, Pavel Melichercik, Rene Kizek, Eva Klapkova","doi":"10.1002/elps.202400058","DOIUrl":"https://doi.org/10.1002/elps.202400058","url":null,"abstract":"<p><p>This study explored the short-term effects of vitamin K2 (VK2) supplementation on biochemical parameters (vitamin D, vitamin E, vitamin A, alkaline phosphatase, calcium, phosphorus (P), magnesium, metallothionein, triglycerides, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and lipoprotein fractions (albumin, HDL, very low-density lipoprotein (VLDL), LDL, and chylomicrons). A short-term experiment (24 h, six probands) was performed to track changes in VK2 levels after a single-dose intake (360 µg/day). Liquid chromatography-tandem mass spectrometry was used to monitor vitamin K levels (menaquinone-4 (MK-4), menaquinone-7 (MK-7), and vitamin K1 [VK1]) with a limit of detection of 1.9 pg/mL for VK1 and 3.8 pg/mL for the two forms of VK2. Results showed that MK-7 levels significantly increased within 2-6 h post-administration and then gradually declined. MK-4 levels were initially low, showing a slight increase, whereas VK1 levels rose initially and then decreased. Biochemical analyses indicated no significant changes in sodium, chloride, potassium, calcium, magnesium, albumin, or total protein levels. A transient increase in P was observed, peaking at 12 h before returning to baseline. Agarose gel electrophoresis of lipoprotein fractions revealed distinct chylomicron bands and variations in VLDL and HDL mobility, influenced by dietary lipids and VK2 supplementation. These findings suggest effective absorption and metabolism of MK-7 with potential implications for bone metabolism and cardiovascular health.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proper application of DNA dyes in agarose gel electrophoresis 在琼脂糖凝胶电泳中正确使用 DNA 染料。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-08-02 DOI: 10.1002/elps.202400082
Ling-Jin Tuo, Teng Zhang, Guo-Qing Chen, Yuan Liu, Cheng Zhao, Shi-Wen Jiang
{"title":"Proper application of DNA dyes in agarose gel electrophoresis","authors":"Ling-Jin Tuo,&nbsp;Teng Zhang,&nbsp;Guo-Qing Chen,&nbsp;Yuan Liu,&nbsp;Cheng Zhao,&nbsp;Shi-Wen Jiang","doi":"10.1002/elps.202400082","DOIUrl":"10.1002/elps.202400082","url":null,"abstract":"<p>Various dyes are used to visualize DNA bands in agarose gel electrophoresis (AGE) by the methods of pre- or post-staining. The DNA dye user's guides generally state that the binding of the dye to DNA will affect DNA mobility in electrophoresis, thus recommending post-staining for accurate measurement of DNA size. However, many AGE performers prefer pre-staining procedures for reasons such as convenience, real-time observation of DNA bands, and/or the use of a minimal amount of dye. The detrimental effect of the dye on DNA mobility and the associated risk for inaccurate measurement of DNA size are often overlooked by AGE performers. Here we quantitatively determine the impact on DNA migration imposed by frequently used dyes, including GelRed, ethidium bromide (EB), and Gold View. It was observed that pre-staining with GelRed and EB significantly slowed down DNA migration to cause as much as 39.1% overestimation on the size of sample DNA, whereas Gold View had little effect. The slowdown of DNA migration increased with dye concentration until it plateaued when the dye concentration reached a saturated level. Thus, to take advantage of pre-staining, saturated levels of DNA dyes should always be applied for both DNA samples and DNA markers to ensure a fair comparison of DNA sizes. In addition, GelRed and EB display much higher sensitivity than Gold View in the detection of DNA bands in post-staining. The saturated concentrations, cost considerations, and other useful features of these frequently used dyes are summarized for the information of AGE performers.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collection of serum albumin aggregate nanoparticles from human plasma by dielectrophoresis 通过介电泳从人体血浆中收集血清白蛋白聚合纳米颗粒。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-07-30 DOI: 10.1002/elps.202400046
Jason Ware, Delaney Shea, Jeong Youn Lim, Anna Malakian, Randall Armstrong, Ronald Pethig, Stuart Ibsen
{"title":"Collection of serum albumin aggregate nanoparticles from human plasma by dielectrophoresis","authors":"Jason Ware,&nbsp;Delaney Shea,&nbsp;Jeong Youn Lim,&nbsp;Anna Malakian,&nbsp;Randall Armstrong,&nbsp;Ronald Pethig,&nbsp;Stuart Ibsen","doi":"10.1002/elps.202400046","DOIUrl":"10.1002/elps.202400046","url":null,"abstract":"<p>Dielectrophoresis (DEP) is a fast and reliable nanoparticle recovery method that utilizes nonuniform electric fields to manipulate particles based on their material composition and size, enabling recovery of biologically-derived nanoparticles from plasma for diagnostic applications. When applying DEP to undiluted human plasma, collection of endogenous albumin proteins was observed at electric field gradients much lower than predicted by theory to collect molecular proteins. To understand this collection, nanoparticle tracking analysis of bovine serum albumin (BSA) dissolved in 0.5× phosphate-buffered saline was performed and showed that albumin spontaneously formed aggregate nanoparticles with a mean diameter of 237 nm. These aggregates experienced a dielectrophoretic force as a function of aggregate radius rather than the diameter of individual protein molecules which contributed to their collection. In high conductance buffer (6.8 mS/cm), DEP was able to move these aggregates into regions of high electric field gradient, and in lower conductance buffer (0.68 mS/cm), these aggregates could be moved into high or low gradient regions depending on the applied frequency. Disruption of BSA aggregates using a nonionic detergent significantly decreased the particle diameter, resulting in decreased dielectrophoretic collection of albumin which increased the collection consistency of particles of interest. These results provide techniques to manipulate albumin aggregates via DEP, which impacts collection of diagnostic biomarkers.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiation of five forensically relevant body fluids using a small set of microRNA markers 利用一小套 microRNA 标记区分五种与法医相关的体液。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-07-30 DOI: 10.1002/elps.202400089
Linus Altmeyer, Karine Baumer, Diana Hall
{"title":"Differentiation of five forensically relevant body fluids using a small set of microRNA markers","authors":"Linus Altmeyer,&nbsp;Karine Baumer,&nbsp;Diana Hall","doi":"10.1002/elps.202400089","DOIUrl":"10.1002/elps.202400089","url":null,"abstract":"<p>In forensic investigations, identifying the type of body fluid allows for the interpretation of biological evidence at the activity level. Over the past two decades, significant research efforts have focused on developing molecular methods for this purpose. MicroRNAs (miRNAs) hold great promise due to their tissue-specific expression, abundance, lack of splice variants, and relative stability. Although initial findings are promising, achieving consistent results across studies is still challenging, underscoring the necessity for both original and replication studies. To address this, we selected 18 miRNA candidates and tested them on 6 body fluids commonly encountered in forensic cases: peripheral blood, menstrual blood, saliva, semen, vaginal secretion, and skin. Using reverse transcription quantitative PCR analysis, we confirmed eight miRNA candidates (miR-144-3p, miR-451a, miR-205-5p, miR-214-3p, miR-888-5p, miR-891a-5p, miR-193b-3p, miR-1260b) with high tissue specificity and four (miR-203a-3p, miR-141-3p, miR-200b-3p, miR-4286) with lesser discrimination ability but still contributing to body fluid differentiation. Through principal component analysis and hierarchical clustering, the set of 12 miRNAs successfully distinguished all body fluids, including the challenging discrimination of blood from menstrual blood and saliva from vaginal secretion. In conclusion, our results provide additional data supporting the use of a small set of miRNAs for predicting common body fluids in forensic contexts. Large population data need to be gathered to develop a body fluid prediction model and assess its accuracy.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and efficient extraction and determination of nonsteroidal anti-inflammatory drugs using poly(8-hydroxyquinoline)-coated magnetic graphene oxide nanocomposite prior to capillary electrophoresis analysis in wastewater, breast milk, and urine samples 在对废水、母乳和尿液样品进行毛细管电泳分析之前,使用聚(8-羟基喹啉)涂层磁性氧化石墨烯纳米复合材料快速高效地提取和测定非甾体类消炎药。
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-07-30 DOI: 10.1002/elps.202400023
Abolfath Shahsavani, Ali Reza Fakhari
{"title":"Fast and efficient extraction and determination of nonsteroidal anti-inflammatory drugs using poly(8-hydroxyquinoline)-coated magnetic graphene oxide nanocomposite prior to capillary electrophoresis analysis in wastewater, breast milk, and urine samples","authors":"Abolfath Shahsavani,&nbsp;Ali Reza Fakhari","doi":"10.1002/elps.202400023","DOIUrl":"10.1002/elps.202400023","url":null,"abstract":"<p>In this study, magnetic graphene oxide coated with poly(8-hydroxyquinoline) was successfully synthesized, characterized, and utilized as a novel sorbent for the ultrasonic-assisted dispersive magnetic solid-phase extraction of naproxen and ibuprofen. These analytes served as representative analytes for two nonsteroidal anti-inflammatory drugs in various real samples. Characterization techniques, such as IR, X-ray powder diffraction, field emission scanning electron microscopy, energy-dispersive X-ray-mapping, and Brunauer-Emmett-Teller (BET), were used to confirm the correctness synthesis and preparation of the nanocomposites. Effective parameters on the extraction efficiency were investigated to maximize the analytical performance of the developed method. The dynamic range (1–1000 µg L<sup>−1</sup>), coefficients of determination (<i>R</i><sup>2</sup> ≥ 0.997), the limits of detection (0.3–1.0 µg L<sup>−1</sup>), and limit of quantification (1.0–3.0 µg L<sup>−1</sup>), intra-day and inter-day precisions (3.5%–7.2%) were achieved. The method validation results showed extraction recovery ranging from 80.4% to 96.0% and preconcentration factors ranging from 137 to 140.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of induced electroosmotic flow in small-scale capillary electrophoresis devices: Strategies for control and reversal 小型毛细管电泳装置中诱导电渗流的研究:控制和逆转策略
IF 3 3区 生物学
ELECTROPHORESIS Pub Date : 2024-07-25 DOI: 10.1002/elps.202400107
Miyuru De Silva, Prabhavie M. Opallage, Robert C. Dunn
{"title":"Investigation of induced electroosmotic flow in small-scale capillary electrophoresis devices: Strategies for control and reversal","authors":"Miyuru De Silva,&nbsp;Prabhavie M. Opallage,&nbsp;Robert C. Dunn","doi":"10.1002/elps.202400107","DOIUrl":"10.1002/elps.202400107","url":null,"abstract":"<p>Electroosmotic flow (EOF) is the bulk flow of solution in a capillary or microchannel induced by an applied electric potential. For capillary and microchip electrophoresis, the EOF enables analysis of both cations and anions in one separation and can be varied to modify separation speed and resolution. The EOF arises from an electrical double layer at the capillary wall and is normally controlled through the pH and ionic strength of the background buffer or with the use of additives. Understanding and controlling the electrical double layer is therefore critical for maintaining acceptable repeatability during method development. Surprisingly, in fused silica capillaries at low pH, studies observe an EOF even though the capillary surface should be neutralized. Previous work has suggested the presence of an “induced electroosmotic flow” from radial electric fields generated across the capillary wall due to the separation voltage and grounded components external to the capillary. Using thin-wall (15 µm) fused silica separation capillaries to facilitate the study of radial fields, we show that the EOF mobility depends on both the separation voltage and the location of external grounds. This is consistent with the induced EOF model, in which radial electric fields embed positive charges at the capillary walls to create an electrical double layer. The magnitude of the effect is characterized and shown to have long-range influences that are difficult to completely null by moving grounded components away from the separation capillary. Instead, active EOF control using externally applied potentials or a passive approach using a negative separation voltage are discussed as two possible methods for controlling the induced EOF. Both methods can reverse the EOF and improve the resolution and peak efficiency in amino acid separations.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信