A Self-Assembly Pipette Tip Restricted Access Mesoporous Polypyrrole Solid-Phase Extraction Coupled With Capillary Electrophoresis With Diode Array Detection for the Determination of Enalapril in Urine Samples
Iara Amorim Carvalho, Camilla Fonseca Silva, Keyller Bastos Borges
{"title":"A Self-Assembly Pipette Tip Restricted Access Mesoporous Polypyrrole Solid-Phase Extraction Coupled With Capillary Electrophoresis With Diode Array Detection for the Determination of Enalapril in Urine Samples","authors":"Iara Amorim Carvalho, Camilla Fonseca Silva, Keyller Bastos Borges","doi":"10.1002/elps.8126","DOIUrl":null,"url":null,"abstract":"<p>A miniaturized self-assembly pipette tip with restricted access mesoporous polypyrrole solid-phase extraction, combined with capillary electrophoresis with diode array detection (CE-DAD), was developed to rapidly extract and determine enalapril from urine samples. The CE-DAD technique used 50 mmol L<sup>−1</sup> phosphate (pH 7) as the background electrolyte, a voltage of 13 kV, a 30 mbar hydrodynamic injection for 4 s, a capillary temperature of 25°C, and a wavelength of 195 nm to achieve a migration time of 6.3 min with satisfactory peak asymmetry and no interfering and/or baseline noise. The factors that influenced the extraction efficiency were evaluated and optimized: 750 µL sample at pH 7.5, 40 mg adsorbent, 250 µL hexane as a washing solvent, and 750 µL acetonitrile as eluent, resulting in recoveries around 74%. Linearity was acceptable in the 100–3000 ng mL<sup>−1</sup> range, and the selectivity and accuracy were also suitable. The limits of detection and quantitation were 30 and 50 ng mL<sup>−1</sup>, respectively. The adsorbent effectively removed 87% of the proteins and may be reused three times. The analytical approach was successfully verified and used to analyze enalapril in urine samples collected from volunteers. Finally, the greenness of the researched technique was assessed using five measures that showed good eco-friendliness.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":"46 7-8","pages":"376-387"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.8126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.8126","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A miniaturized self-assembly pipette tip with restricted access mesoporous polypyrrole solid-phase extraction, combined with capillary electrophoresis with diode array detection (CE-DAD), was developed to rapidly extract and determine enalapril from urine samples. The CE-DAD technique used 50 mmol L−1 phosphate (pH 7) as the background electrolyte, a voltage of 13 kV, a 30 mbar hydrodynamic injection for 4 s, a capillary temperature of 25°C, and a wavelength of 195 nm to achieve a migration time of 6.3 min with satisfactory peak asymmetry and no interfering and/or baseline noise. The factors that influenced the extraction efficiency were evaluated and optimized: 750 µL sample at pH 7.5, 40 mg adsorbent, 250 µL hexane as a washing solvent, and 750 µL acetonitrile as eluent, resulting in recoveries around 74%. Linearity was acceptable in the 100–3000 ng mL−1 range, and the selectivity and accuracy were also suitable. The limits of detection and quantitation were 30 and 50 ng mL−1, respectively. The adsorbent effectively removed 87% of the proteins and may be reused three times. The analytical approach was successfully verified and used to analyze enalapril in urine samples collected from volunteers. Finally, the greenness of the researched technique was assessed using five measures that showed good eco-friendliness.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.