Antonia Wittmann, Yannick Wilke, Nicolas Grammel, Hermann Wätzig
{"title":"Evaluation of a cIEF Fractionation Workflow for Offline MS Analysis of Charge Variants of the Monoclonal Antibody Matuzumab","authors":"Antonia Wittmann, Yannick Wilke, Nicolas Grammel, Hermann Wätzig","doi":"10.1002/elps.8108","DOIUrl":null,"url":null,"abstract":"<p>Biological drugs like monoclonal antibodies require careful analysis and characterization to ensure product quality, safety, and efficacy. Charge variants of the molecule are of key interest and are analyzed using imaged capillary isoelectric focusing (icIEF). However, deeper characterization of these variants poses challenges. Two workflows for their characterization exist: an ion-exchange chromatography method for variant collection before mass spectrometry (MS) analysis, which is labor-intensive, and direct coupling of CE to MS, which allows detailed structural characterization but has limitations, for example, due to incompatibilities with ES ionization using high BGE concentrations. This study evaluates a platform that fractionates charge variants for offline MS analysis. The suitability of a procedure in which analytical icIEF methods are converted into preparative cIEF fractionation methods by increasing the sample concentration and adding 20 mM arginine as a cathodic spacer was tested. After chemical mobilization and fraction collection, the identity of the fractions was determined by fluorescence measurement and reinjection of the protein-containing fractions, using the previously developed analytical icIEF method. MS was subsequently performed. The general suitability of the workflow was demonstrated using Matuzumab. Transferring the analytical method from a concentration of 0.2 to 1.2 mg/mL in fractionation yielded an identical number of peaks and visually comparable peak profiles. The preparative separation took 50 min, with an additional 25 min for mobilization and 45 s per fraction collection, totaling approximately 2.5 h. Verification of charge variant isolation was straightforward via analytical icIEF. Following fractionation, MS allowed for the identification of the main peaks. Preliminary results with other antibodies indicated that the concentration range for MS experiments needs further investigation. Future work will aim to optimize sensitivity, selectivity, analysis time, and reproducibility.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":"46 3-4","pages":"240-249"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.8108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.8108","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Biological drugs like monoclonal antibodies require careful analysis and characterization to ensure product quality, safety, and efficacy. Charge variants of the molecule are of key interest and are analyzed using imaged capillary isoelectric focusing (icIEF). However, deeper characterization of these variants poses challenges. Two workflows for their characterization exist: an ion-exchange chromatography method for variant collection before mass spectrometry (MS) analysis, which is labor-intensive, and direct coupling of CE to MS, which allows detailed structural characterization but has limitations, for example, due to incompatibilities with ES ionization using high BGE concentrations. This study evaluates a platform that fractionates charge variants for offline MS analysis. The suitability of a procedure in which analytical icIEF methods are converted into preparative cIEF fractionation methods by increasing the sample concentration and adding 20 mM arginine as a cathodic spacer was tested. After chemical mobilization and fraction collection, the identity of the fractions was determined by fluorescence measurement and reinjection of the protein-containing fractions, using the previously developed analytical icIEF method. MS was subsequently performed. The general suitability of the workflow was demonstrated using Matuzumab. Transferring the analytical method from a concentration of 0.2 to 1.2 mg/mL in fractionation yielded an identical number of peaks and visually comparable peak profiles. The preparative separation took 50 min, with an additional 25 min for mobilization and 45 s per fraction collection, totaling approximately 2.5 h. Verification of charge variant isolation was straightforward via analytical icIEF. Following fractionation, MS allowed for the identification of the main peaks. Preliminary results with other antibodies indicated that the concentration range for MS experiments needs further investigation. Future work will aim to optimize sensitivity, selectivity, analysis time, and reproducibility.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.