Developmental cell最新文献

筛选
英文 中文
TMK-PIN1 drives a short self-organizing circuit for auxin export and signaling in Arabidopsis TMK-PIN1驱动拟南芥中生长素输出和信号传导的短自组织电路
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-10-02 DOI: 10.1016/j.devcel.2025.09.009
Rongfeng Huang, Jiacheng Wang, Mingzeng Chang, Wenxin Tang, Yongqiang Yu, Yi Zhang, Yao Peng, Yanan Wang, Yihan Guo, Ting Lu, Yang Cao, Yewei Zhou, Qinglin Zhang, Yuehong Huang, Angxiao Wu, Luyan Ren, Michelle Gallei, Juan Dong, Haodong Chen, Jun He, Tongda Xu
{"title":"TMK-PIN1 drives a short self-organizing circuit for auxin export and signaling in Arabidopsis","authors":"Rongfeng Huang, Jiacheng Wang, Mingzeng Chang, Wenxin Tang, Yongqiang Yu, Yi Zhang, Yao Peng, Yanan Wang, Yihan Guo, Ting Lu, Yang Cao, Yewei Zhou, Qinglin Zhang, Yuehong Huang, Angxiao Wu, Luyan Ren, Michelle Gallei, Juan Dong, Haodong Chen, Jun He, Tongda Xu","doi":"10.1016/j.devcel.2025.09.009","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.09.009","url":null,"abstract":"The versatile and pivotal roles of the phytohormone auxin in regulating plant growth and development are typically linked to its directional transport, relying on the polarized PIN-FORMED (PIN) auxin exporters at the plasma membrane (PM). For decades, auxin has been proposed to promote PIN polarization, generating self-regulatory feedback mediating much of plant development, but mechanistic insight into this regulation is lacking. Here, we uncover an auxin-induced protein complex at the PM, containing auxin co-receptors transmembrane kinases (TMKs) and PIN1 auxin exporter, as the core machinery that underlies this feedback regulation. Auxin promotes PIN1 phosphorylation by TMKs, modulating PIN1 polarization and transport activity. We also provide evidence that PIN1-exported extracellular auxin is crucial for TMK activation and cell elongation, thus forming the simplest two-element self-regulatory feedback circuit. Thus, these findings offer direct mechanistic insights into a potential self-organizing circuit for auxin signaling and transport to ensure proper plant development in <em>Arabidopsis</em>.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"214 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145204003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidermal hydrodynamics controls water homeostasis of shoot meristems for plant adaptation to terrestrial environments 表皮水动力学控制着植物芽分生组织的水分稳态,以适应陆地环境
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-30 DOI: 10.1016/j.devcel.2025.09.007
Yimin Zhu, Xianmiao Zhu, Simin Bi, Dan Teng, Muhammad Tahir, Yangxuan Liu, Long Wang, Huanhuan Liu, Tingting Wen, Leyao Zhu, Zhenquan Li, Xing Chen, Minhua Zhang, Wenjuan Cai, Zhijun Liu, Mingyue Zheng, Yu Zhang, Ji-Ming Gong, Jia-Wei Wang, Zuhua He, Weibing Yang
{"title":"Epidermal hydrodynamics controls water homeostasis of shoot meristems for plant adaptation to terrestrial environments","authors":"Yimin Zhu, Xianmiao Zhu, Simin Bi, Dan Teng, Muhammad Tahir, Yangxuan Liu, Long Wang, Huanhuan Liu, Tingting Wen, Leyao Zhu, Zhenquan Li, Xing Chen, Minhua Zhang, Wenjuan Cai, Zhijun Liu, Mingyue Zheng, Yu Zhang, Ji-Ming Gong, Jia-Wei Wang, Zuhua He, Weibing Yang","doi":"10.1016/j.devcel.2025.09.007","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.09.007","url":null,"abstract":"Water uptake and redistribution represent a significant challenge for plant colonization of land. While vascular plants have evolved specialized structures for water transport, how water homeostasis is maintained in meristematic tissues remains elusive. Here, we show that the <em>Arabidopsis</em> shoot meristem develops within a high-humidity niche. The homeodomain leucine zipper (HD-ZIP) transcription factor ARABIDOPSIS THALIANA MERISTEM LAYER 1 (ATML1) and its regulatory target <em>PIP2;5</em> establish a water conduit across L1 cells to facilitate hydraulic exchange with the surrounding microenvironment. The ATML1-PIP2;5 module regulates stem cell activity in response to humidity fluctuations and is associated with local adaptation to arid climates in natural populations. Transcriptional activation of water flux by class IV homeodomain-leucine zipper (C4HDZ) proteins predates the emergence of vascular systems, contributing to hydraulic response in the liverwort <em>Marchantia polymorpha</em>. Our results reveal an evolutionarily conserved epidermal hydraulic pathway that integrates developmental patterning with environmental sensing, highlighting a fundamental role for the shoot meristem in shaping plant adaptation in terrestrial habitats.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"11 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145189272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human pluripotent stem cell-derived fetal hepatic stellate cells promote vascularization and maturation in liver organoids 人多能干细胞衍生的胎儿肝星状细胞促进肝类器官的血管化和成熟
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-29 DOI: 10.1016/j.devcel.2025.09.002
Xia Yang, Yun-Zhong Nie, Chun Lu, Yang Li, Yoshihito Hayashi, Riana Plummer, Na Luo, Qinglin Li, Toshiharu Kasai, Takashi Okumura, Yumiko Isobe, Kiyoshi Yamaguchi, Yoichi Furukawa, Yan Li, Hideki Taniguchi
{"title":"Human pluripotent stem cell-derived fetal hepatic stellate cells promote vascularization and maturation in liver organoids","authors":"Xia Yang, Yun-Zhong Nie, Chun Lu, Yang Li, Yoshihito Hayashi, Riana Plummer, Na Luo, Qinglin Li, Toshiharu Kasai, Takashi Okumura, Yumiko Isobe, Kiyoshi Yamaguchi, Yoichi Furukawa, Yan Li, Hideki Taniguchi","doi":"10.1016/j.devcel.2025.09.002","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.09.002","url":null,"abstract":"Human-induced pluripotent stem cell (hiPSC)-derived liver organoids (LOs) are valuable for studying human liver organogenesis but face challenges in faithfully recapitulating certain processes, like vasculogenesis, due to the lack of specific cell components. Hepatic stellate cells (HSCs), which are liver-specific pericytes and might be crucial for liver vasculogenesis, remain underutilized in developmental studies because of their disease-related status and inefficient generation process. Here, we present an efficient method for generating hiPSC-derived HSCs (hiPSC-HSCs) resembling the transcriptomic profiles of fetal human HSCs. These hiPSC-HSCs exhibit exceptional expandability (&gt;10<sup>5</sup>-fold) while maintaining essential cellular features. Additionally, in entirely hiPSC-derived LOs consisting of HSCs, hepatic endoderm, and endothelial cells, hiPSC-HSCs play a vital role in LO maturation and vascularization, both <em>in vitro</em> and <em>in vivo</em>. This work represents a significant advancement in understanding HSC roles in human liver development, and LOs containing hiPSC-HSCs hold potential in modeling congenital human liver diseases.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"4 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-cell-autonomous tumor promotion in DICER1 cancer predisposition 非细胞自主肿瘤促进DICER1癌症易感性
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-29 DOI: 10.1016/j.devcel.2025.09.001
Randolph K. Larsen, Jason A. Hanna, Hongjian Jin, Kristin B. Reed, Darden W. Kimbrough, Kyna Vuong, Jongchan Hwang, Grace E. Adkins, Jack D. Hopkins, Bradley T. Stevens, Myron K. Evans, Casey G. Langdon, Catherine J. Drummond, Matthew R. Garcia, Kristin B. Wiggins, Amy R. Iverson, David Finkelstein, Patrick A. Schreiner, Jason W. Rosch, Jerold E. Rehg, Mark E. Hatley
{"title":"Non-cell-autonomous tumor promotion in DICER1 cancer predisposition","authors":"Randolph K. Larsen, Jason A. Hanna, Hongjian Jin, Kristin B. Reed, Darden W. Kimbrough, Kyna Vuong, Jongchan Hwang, Grace E. Adkins, Jack D. Hopkins, Bradley T. Stevens, Myron K. Evans, Casey G. Langdon, Catherine J. Drummond, Matthew R. Garcia, Kristin B. Wiggins, Amy R. Iverson, David Finkelstein, Patrick A. Schreiner, Jason W. Rosch, Jerold E. Rehg, Mark E. Hatley","doi":"10.1016/j.devcel.2025.09.001","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.09.001","url":null,"abstract":"DICER1-related tumors are characterized by germline loss-of-function mutations in one <em>DICER1</em> allele (<em>DICER1</em><sup><em>+/−</em></sup>) and a somatic “second hit” mutation in the remaining <em>DICER1</em> allele. Whether the germline <em>DICER1</em><sup><em>+/−</em></sup> mutation participates in tumorigenesis is unknown. We show that germline heterozygous loss of <em>Dicer1</em> promotes tumor formation via aberrant neutrophil function in spontaneous and allograft mouse models of rhabdomyosarcoma. Germline heterozygous deletion of <em>Dicer1</em> decreased tumor latency and increased tumor penetrance, while conditional heterozygous deletion in tumor cells did not, illustrating that non-cell-autonomous contributions were required for tumor promotion. We show that <em>Dicer1</em><sup><em>+/−</em></sup> murine and human tumors were enriched for neutrophils and that tumor-bearing mice had abundant circulating neutrophil extracellular traps (NETs). Genetically and pharmacologically preventing NET release reduced tumor promotion in <em>Dicer1</em><sup><em>+/−</em></sup> mice, suggesting NETs promote tumor growth. These findings demonstrate that germline <em>DICER1</em><sup><em>+/−</em></sup> mutations promote tumor growth and suggest that targeting neutrophils/NET release may reduce cancer risk in <em>DICER1</em><sup><em>+/−</em></sup> individuals.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"118 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lmo3-expressing peri-isthmus progenitor cells sustain renewal and repair of the mammalian intestinal telocyte niche 表达lmo3的峡周祖细胞维持哺乳动物肠远端细胞生态位的更新和修复
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-26 DOI: 10.1016/j.devcel.2025.09.004
Daxin Jiang, Guoli Zhu, Yongchao Zhang, Jiawen Wang, Nannan Qian, Zhen Jin, Qingyu Sun, Haimeng Yu, Kebei Tang, Tao Cai, Fengchao Wang, Rongwen Xi
{"title":"Lmo3-expressing peri-isthmus progenitor cells sustain renewal and repair of the mammalian intestinal telocyte niche","authors":"Daxin Jiang, Guoli Zhu, Yongchao Zhang, Jiawen Wang, Nannan Qian, Zhen Jin, Qingyu Sun, Haimeng Yu, Kebei Tang, Tao Cai, Fengchao Wang, Rongwen Xi","doi":"10.1016/j.devcel.2025.09.004","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.09.004","url":null,"abstract":"Intestinal telocytes that reside immediately beneath the intestinal epithelium exert niche-supporting roles for intestinal stem cells and their progenies. They are heterogeneous cells compartmentalized along the crypt-villus axis, but the mechanisms governing the maintenance of this telocyte population remain unclear. Here, we identify a distinct population of subepithelial mesenchymal cells in the developing mouse embryo, marked by <em>LIM Domain Only 3</em> (<em>Lmo3</em>), as the cellular origin of post-natal intestinal telocytes. The <em>Lmo3</em><sup><em>+</em></sup> cells emerge prior to villus formation at embryonic day 13.5, and after birth, they progressively acquire a spatial confinement to the intestinal isthmus region, where they persist as long-lived, slow-cycling cells, supplying both peri-villus and peri-crypt telocytes. Further, we show that <em>Lmo3</em><sup>+</sup> cells respond rapidly to tissue damage, becoming activated to promote repair of the telocyte niche. Therefore, a quiescent and damage-responsive progenitor cell population marked by <em>Lmo3</em> maintains the intestinal telocyte niche.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"94 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145141185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-EM structure and dynamic basis of phosphate uptake by PHT1 in rice 水稻PHT1吸收磷素的低温电镜结构和动态基础
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-25 DOI: 10.1016/j.devcel.2025.09.003
Zhangmeng Du, Zeyuan Guan, Hai Liu, Jie Zhang, Haitao He, Zhiwen Zheng, Wenhui Zhang, Lihuan Jiang, Jiaqi Zuo, Yan Liu, Beijing Wan, Haifu Tu, Faming Dong, Xuelei Lai, Lizhong Xiong, Ping Yin, Shaowu Xue, Yanke Chen, Zhu Liu
{"title":"Cryo-EM structure and dynamic basis of phosphate uptake by PHT1 in rice","authors":"Zhangmeng Du, Zeyuan Guan, Hai Liu, Jie Zhang, Haitao He, Zhiwen Zheng, Wenhui Zhang, Lihuan Jiang, Jiaqi Zuo, Yan Liu, Beijing Wan, Haifu Tu, Faming Dong, Xuelei Lai, Lizhong Xiong, Ping Yin, Shaowu Xue, Yanke Chen, Zhu Liu","doi":"10.1016/j.devcel.2025.09.003","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.09.003","url":null,"abstract":"Phosphorus is an essential macronutrient for plants, primarily absorbed from the soil as inorganic phosphate (Pi) through root-located Pi transporters. Despite decades of research into these transporters as targets for developing Pi-efficient crops, their mechanisms for Pi import remain poorly understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of the rice Pi importer OsPHT1;11 in both Pi-bound and unbound forms, characterize its conformational dynamics, and demonstrate how these dynamics contribute to its transport function. Pi is recognized through conserved residues found in plants, with its translocation facilitated by a typical alternating-access mechanism. Single-molecule fluorescence resonance energy transfer (smFRET) analyses show that this transporter undergoes dynamic conformational fluctuations, which are differentially linked to its Pi transport capability, with a predominance of extracellular open conformations favoring Pi transport, while more populated intracellular open conformations hinder it. These findings highlight key conformational determinants of transport activity and provide mechanistic insights into Pi uptake in plants.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"193 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145140955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal CENP-C restores centromere symmetry in mammalian zygotes to ensure proper chromosome segregation 母体CENP-C恢复哺乳动物受精卵的着丝粒对称性,以确保适当的染色体分离
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-24 DOI: 10.1016/j.devcel.2025.08.017
Catherine A. Tower, Gabriel Manske, Emily L. Ferrell, Dilara N. Anbarci, Kelsey Jorgensen, Binbin Ma, Mansour Aboelenain, Rajesh Ranjan, Saikat Chakraborty, Lindsay Moritz, Arunika Das, Michele Boiani, Ben E. Black, Shawn Chavez, Erica E. Marsh, Ariella Shikanov, Karen Schindler, Xin Chen, Saher Sue Hammoud
{"title":"Maternal CENP-C restores centromere symmetry in mammalian zygotes to ensure proper chromosome segregation","authors":"Catherine A. Tower, Gabriel Manske, Emily L. Ferrell, Dilara N. Anbarci, Kelsey Jorgensen, Binbin Ma, Mansour Aboelenain, Rajesh Ranjan, Saikat Chakraborty, Lindsay Moritz, Arunika Das, Michele Boiani, Ben E. Black, Shawn Chavez, Erica E. Marsh, Ariella Shikanov, Karen Schindler, Xin Chen, Saher Sue Hammoud","doi":"10.1016/j.devcel.2025.08.017","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.08.017","url":null,"abstract":"Across metazoan species, the centromere-specific histone variant CENP-A is essential for accurate chromosome segregation, yet its regulation during the mammalian parental-to-zygote transition is poorly understood. To address this, we generated a CENP-A-mScarlet mouse model that revealed sex-specific dynamics: mature sperm retain 10% of the CENP-A levels present in MII oocytes. However, this difference is resolved in zygotes prior to the first mitosis, using maternally inherited cytoplasmic CENP-A. Notably, the increase in CENP-A at paternal centromeres is independent of sensing CENP-A asymmetry or the presence of maternal chromosomes. Instead, CENP-A equalization relies on the asymmetric recruitment of maternal CENP-C to paternal centromeres. Depletion of maternal CENP-A decreases total CENP-A in both pronuclei without disrupting equalization. In contrast, reducing maternal CENP-C or disruption of its dimerization function impairs CENP-A equalization and chromosome segregation. Therefore, maternal CENP-C acts as a key epigenetic regulator that resets centromeric symmetry at fertilization to preserve genome integrity.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"11 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145127337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vascularizing stem cell-derived islets: A blueprint for functional maturation 血管干细胞衍生的胰岛:功能成熟的蓝图
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-22 DOI: 10.1016/j.devcel.2025.07.012
Yan Xiong, Per-Olof Berggren
{"title":"Vascularizing stem cell-derived islets: A blueprint for functional maturation","authors":"Yan Xiong, Per-Olof Berggren","doi":"10.1016/j.devcel.2025.07.012","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.07.012","url":null,"abstract":"In this issue of <em>Developmental Cell</em>, Jun, Nguyen-Ngoc et al. report that embedding human pluripotent stem cell-derived islets with endothelial cells and fibroblasts, which form perfusable microvessels, accelerates β cell functional maturation. Endothelial cell-derived extracellular matrix proteins and BMP2/4 enhance the β cell Ca<sup>2</sup>⁺ response, insulin secretion, and <em>in vivo</em> graft performance.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"21 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145103803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancers, silencers, and attenuators: A dynamic and reversible regulatory code 增强器、消声器和衰减器:一种动态可逆的调节代码
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-22 DOI: 10.1016/j.devcel.2025.06.039
Emily R. Wilson, Xiaoyang Zhang
{"title":"Enhancers, silencers, and attenuators: A dynamic and reversible regulatory code","authors":"Emily R. Wilson, Xiaoyang Zhang","doi":"10.1016/j.devcel.2025.06.039","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.06.039","url":null,"abstract":"Precise spatial and temporal control of gene expression, orchestrated by <em>cis</em>-regulatory elements, is essential for diverse cell-type specification during mammalian development. In this issue of <em>Developmental Cell</em>, Amblard et al. dissect the <em>cis</em>-regulatory logic governing <em>Cdx2</em> expression during caudal body development, identifying a dynamic regulatory code fine-tuning gene expression.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"16 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145103800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging insights into lineage plasticity in pancreatic cancer initiation, progression, and therapy resistance 胰腺癌起始、进展和治疗耐药谱系可塑性的新见解
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-09-22 DOI: 10.1016/j.devcel.2025.07.002
Xintong Zhang, Yaru Du, Axel Behrens, Linxiang Lan
{"title":"Emerging insights into lineage plasticity in pancreatic cancer initiation, progression, and therapy resistance","authors":"Xintong Zhang, Yaru Du, Axel Behrens, Linxiang Lan","doi":"10.1016/j.devcel.2025.07.002","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.07.002","url":null,"abstract":"Lineage plasticity, the ability of cells to switch from one specialized identity to another, is a fundamental cellular process in embryonic development and tissue regeneration. The process is often hijacked by tumor cells at various stages to facilitate cancer initiation, progression, metastasis, and therapy resistance. It is also recognized as a key contributor to intratumor heterogeneity (ITH). In pancreatic ductal adenocarcinoma (PDAC), lineage plasticity is central to acinar-to-ductal metaplasia (ADM) and its associated acinar-to-ductal reprogramming (ADR), epithelial-mesenchymal transition (EMT), cancer stem cell (CSC) regeneration, and molecular subtype rewiring. These mechanisms generate diverse lineage trajectories that shape PDAC development, progression, and therapeutic outcomes. In this review, we discuss how normal and tumor cells in the pancreatic epithelium acquire lineage plasticity and its implications for PDAC pathogenesis, ITH, metastasis, and therapy resistance. We also highlight recent discoveries suggesting potential therapeutic strategies targeting key regulators of lineage plasticity in PDAC.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"14 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145103804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信