Developmental cell最新文献

筛选
英文 中文
A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-24 DOI: 10.1016/j.devcel.2025.01.001
Jerry J. Fan, Anders W. Erickson, Julia Carrillo-Garcia, Xin Wang, Patryk Skowron, Xian Wang, Xin Chen, Guanqiao Shan, Wenkun Dou, Shahrzad Bahrampour, Yi Xiong, Weifan Dong, Namal Abeysundara, Michelle A. Francisco, Ronwell J. Pusong, Wei Wang, Miranda Li, Elliot Ying, Raúl A. Suárez, Hamza Farooq, Xi Huang
{"title":"A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance","authors":"Jerry J. Fan, Anders W. Erickson, Julia Carrillo-Garcia, Xin Wang, Patryk Skowron, Xian Wang, Xin Chen, Guanqiao Shan, Wenkun Dou, Shahrzad Bahrampour, Yi Xiong, Weifan Dong, Namal Abeysundara, Michelle A. Francisco, Ronwell J. Pusong, Wei Wang, Miranda Li, Elliot Ying, Raúl A. Suárez, Hamza Farooq, Xi Huang","doi":"10.1016/j.devcel.2025.01.001","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.01.001","url":null,"abstract":"Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes <em>in vivo</em> and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel <em>KCNB2</em> as a candidate maintenance driver. KCNB2 governs cell volume of MB-propagating cells (MPCs), with KCNB2 depletion causing osmotic swelling, decreased plasma membrane tension, and elevated endocytic internalization of epidermal growth factor receptor (EGFR), thereby mitigating proliferation of MPCs to ultimately impair MB growth. KCNB2 is largely dispensable for mouse development and KCNB2 knockout synergizes with anti-SHH therapy in treating MB. These results demonstrate the utility of the Lazy Piggy functional genomic approach in identifying cancer maintenance drivers and elucidate a mechanism by which potassium homeostasis integrates biomechanical and biochemical signaling to promote MB aggression.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"52 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-24 DOI: 10.1016/j.devcel.2025.01.002
Filip Vasilev, Aleksandar I. Mihajlović, Gaudeline Rémillard-Labrosse, Greg FitzHarris
{"title":"Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos","authors":"Filip Vasilev, Aleksandar I. Mihajlović, Gaudeline Rémillard-Labrosse, Greg FitzHarris","doi":"10.1016/j.devcel.2025.01.002","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.01.002","url":null,"abstract":"Apoptosis is a key feature of preimplantation development, but whether it occurs in a cell-autonomous or coordinated manner was unknown. Here, we report that plasma membrane abscission, the final step of cell division, is profoundly delayed in early mouse embryos such that a cytokinetic bridge is maintained for the vast majority of the following interphase. Early embryos thus consist of many pairs of sister cells connected by stable cytokinetic bridges that allow them to share diffusible molecules. We show that apoptotic regulators are shared through cytokinetic bridges and that these bridges ensure that if one cell enters apoptosis, its sister cell does as well. Long-lived cytokinetic bridges are thus a previously unappreciated form of cell-cell communication within the mouse embryo that coordinate the clearance of pairs of cells with similar developmental histories.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"2 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An orphan gene BOOSTER enhances photosynthetic efficiency and plant productivity 孤儿基因BOOSTER提高光合效率和植物生产力
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-21 DOI: 10.1016/j.devcel.2025.01.006
Biruk A. Feyissa, Elsa M. de Becker, Coralie E. Salesse-Smith, Mengjun Shu, Jin Zhang, Timothy B. Yates, Meng Xie, Kuntal De, Dhananjay Gotarkar, Margot S.S. Chen, Sara S. Jawdy, Dana L. Carper, Kerrie Barry, Jeremy Schmutz, David J. Weston, Paul E. Abraham, Chung-Jui Tsai, Jennifer L. Morrell-Falvey, Gail Taylor, Jin-Gui Chen, Wellington Muchero
{"title":"An orphan gene BOOSTER enhances photosynthetic efficiency and plant productivity","authors":"Biruk A. Feyissa, Elsa M. de Becker, Coralie E. Salesse-Smith, Mengjun Shu, Jin Zhang, Timothy B. Yates, Meng Xie, Kuntal De, Dhananjay Gotarkar, Margot S.S. Chen, Sara S. Jawdy, Dana L. Carper, Kerrie Barry, Jeremy Schmutz, David J. Weston, Paul E. Abraham, Chung-Jui Tsai, Jennifer L. Morrell-Falvey, Gail Taylor, Jin-Gui Chen, Wellington Muchero","doi":"10.1016/j.devcel.2025.01.006","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.01.006","url":null,"abstract":"(Developmental Cell <em>60</em>, 1–12.e1–e7; March 10, 2025)","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"28 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasticity in metastatic colorectal cancer 转移性结直肠癌的可塑性
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-20 DOI: 10.1016/j.devcel.2024.12.018
Frederick J.H. Whiting, Trevor A. Graham
{"title":"Plasticity in metastatic colorectal cancer","authors":"Frederick J.H. Whiting, Trevor A. Graham","doi":"10.1016/j.devcel.2024.12.018","DOIUrl":"https://doi.org/10.1016/j.devcel.2024.12.018","url":null,"abstract":"Genetic mutations cause colorectal cancer (CRC) initiation, but their contribution to metastasis and therapy resistance is less clear. In a recent issue of <em>Nature</em>, Moorman et al.<span><span><sup>1</sup></span></span> use single-cell transcriptome sequencing to map the changes in cancer cell state (cell phenotypes) that occur through CRC progression.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"122 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactate shuttling links histone lactylation to adult hippocampal neurogenesis in mice 乳酸穿梭将组蛋白乳酸化与小鼠成年海马神经发生联系起来
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-17 DOI: 10.1016/j.devcel.2025.01.007
Zhimin Li, Ziqi Liang, Huan Qi, Xing Luo, Min Wang, Zhuo Du, Weixiang Guo
{"title":"Lactate shuttling links histone lactylation to adult hippocampal neurogenesis in mice","authors":"Zhimin Li, Ziqi Liang, Huan Qi, Xing Luo, Min Wang, Zhuo Du, Weixiang Guo","doi":"10.1016/j.devcel.2025.01.007","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.01.007","url":null,"abstract":"(Developmental Cell <em>60</em>, 1–17.e1–e8; April 21, 2025)","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"83 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mTor limits autophagy to facilitate cell volume expansion and rapid wound repair in Drosophila embryos 在果蝇胚胎中,mTor限制自噬以促进细胞体积扩张和快速伤口修复
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-16 DOI: 10.1016/j.devcel.2024.12.039
Gordana Scepanovic, Negar Balaghi, Katheryn E. Rothenberg, Rodrigo Fernandez-Gonzalez
{"title":"mTor limits autophagy to facilitate cell volume expansion and rapid wound repair in Drosophila embryos","authors":"Gordana Scepanovic, Negar Balaghi, Katheryn E. Rothenberg, Rodrigo Fernandez-Gonzalez","doi":"10.1016/j.devcel.2024.12.039","DOIUrl":"https://doi.org/10.1016/j.devcel.2024.12.039","url":null,"abstract":"Embryonic wounds repair rapidly, with no inflammation or scarring. Embryonic wound healing is driven by collective cell movements facilitated by the increase in the volume of the cells adjacent to the wound. The mechanistic target of rapamycin (mTor) complex 1 (TORC1) is associated with cell growth. We found that disrupting TORC1 signaling in <em>Drosophila</em> embryos prevented cell volume increases and slowed down wound repair. Catabolic processes, such as autophagy, can inhibit cell growth. Five-dimensional microscopy demonstrated that the number of autophagosomes decreased during wound repair, suggesting that autophagy must be tightly regulated for rapid wound healing. mTor inhibition increased autophagy, and activating autophagy prevented cell volume expansion and slowed down wound closure. Finally, reducing autophagy in embryos with disrupted TORC1 signaling rescued cell volume changes and rapid wound repair. Together, our results show that TORC1 activation upon wounding negatively regulates autophagy, allowing cells to increase their volumes to facilitate rapid wound healing.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"38 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis 斑马鱼胚胎发生过程中5 ' utr在翻译控制中的调控前景
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-15 DOI: 10.1016/j.devcel.2024.12.038
Madalena M. Reimão-Pinto, Sebastian M. Castillo-Hair, Georg Seelig, Alexander F. Schier
{"title":"The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis","authors":"Madalena M. Reimão-Pinto, Sebastian M. Castillo-Hair, Georg Seelig, Alexander F. Schier","doi":"10.1016/j.devcel.2024.12.038","DOIUrl":"https://doi.org/10.1016/j.devcel.2024.12.038","url":null,"abstract":"The 5′ UTRs of mRNAs are critical for translation regulation during development, but their <em>in vivo</em> regulatory features are poorly characterized. Here, we report the regulatory landscape of 5′ UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5′ UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5′ UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, <em>Danio</em> Optimus 5-Prime (DaniO5P), identified a combined role for 5′ UTR length, translation initiation site context, upstream AUGs, and sequence motifs on ribosome recruitment. DaniO5P predicts the activities of maternal and zygotic 5′ UTR isoforms and indicates that modulating 5′ UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5′ UTR-based translation regulation in development and lays the foundation for identifying the underlying molecular effectors.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"49 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis 钙依赖性蛋白激酶 CPK3/4/6/11 和 27 对拟南芥的渗透胁迫做出反应并激活 SnRK2s
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-14 DOI: 10.1016/j.devcel.2024.12.036
Qingzhong Li, Tao Hu, Tianjiao Lu, Bo Yu, Yang Zhao
{"title":"Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis","authors":"Qingzhong Li, Tao Hu, Tianjiao Lu, Bo Yu, Yang Zhao","doi":"10.1016/j.devcel.2024.12.036","DOIUrl":"https://doi.org/10.1016/j.devcel.2024.12.036","url":null,"abstract":"Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca<sup>2+</sup> and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca<sup>2+</sup> signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in <em>Arabidopsis</em>. Using quantitative phosphoproteomics in a higher-order mutant lacking 12 <em>pyrabactin resistance 1-like</em> (<em>PYL</em>) abscisic acid (ABA) receptors, we identified six CPKs that are phosphorylated under osmotic stress. CPK3/4/6/11/27 phosphorylate the SnRK2s on multiple phosphosites within the activation loop. The <em>cpk3/4/6/11/27</em> mutant is defective in SnRK2 activation, seed germination, and seedling growth under mild osmotic stress. Our findings elucidate the critical roles of CPK3/4/6/11/27 in decoding Ca<sup>2+</sup> signals to activate SnRK2s and demonstrate a CPK-SnRK2 kinase cascade controlling osmotic stress responses in plants.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"51 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms 小鼠胎盘血管的空间分区由表观遗传机制决定
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-14 DOI: 10.1016/j.devcel.2024.12.037
Stephanie Gehrs, Moritz Jakab, Ewgenija Gutjahr, Zuguang Gu, Dieter Weichenhan, Jan-Philipp Mallm, Carolin Mogler, Matthias Schlesner, Christoph Plass, Katharina Schlereth, Hellmut G. Augustin
{"title":"The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms","authors":"Stephanie Gehrs, Moritz Jakab, Ewgenija Gutjahr, Zuguang Gu, Dieter Weichenhan, Jan-Philipp Mallm, Carolin Mogler, Matthias Schlesner, Christoph Plass, Katharina Schlereth, Hellmut G. Augustin","doi":"10.1016/j.devcel.2024.12.037","DOIUrl":"https://doi.org/10.1016/j.devcel.2024.12.037","url":null,"abstract":"The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms. Spatiotemporal transcriptomic profiling identified a gradual change in the expression of epigenetic enzymes, including the <em>de novo</em> DNA methyltransferase 3a (DNMT3A). Loss of <em>Dnmt3a</em> resulted in DNA hypomethylation and perturbation of zonated placental gene expression. The resulting global DNA hypomethylation impaired the angiogenic capacity of endothelial cells. Global or endothelium-predominant deletion of <em>Dnmt3a</em> resulted in impaired placental vascularization and fetal growth retardation (FGR). Human placental endothelial gene expression profiling associated preeclampsia with reduced DNMT3A expression. Collectively, our study identified DMNT3A as critical methylome-regulator of placental endothelial gene expression and function with clinical implications for placental dysfunction, as it occurs during preeclampsia or FGR.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"22 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allelic transcriptomic profiling identifies the role of PRD-like homeobox genes in human embryonic-cleavage-stage arrest 等位基因转录组学分析鉴定了prd样同源盒基因在人类胚胎裂解期阻滞中的作用
IF 11.8 1区 生物学
Developmental cell Pub Date : 2025-01-13 DOI: 10.1016/j.devcel.2024.12.031
Qianying Guo, Fanqing Xu, Shi Song, Siming Kong, Fan Zhai, Yuwen Xiu, Dandan Liu, Ming Li, Ying Lian, Ling Ding, Qian Liu, Ming Yang, Zhengrong Du, Nan Wang, Chuan Long, Xiaomeng Wang, Yuqian Wang, Zhiqiang Yan, Jie Qiao, Liying Yan, Peng Yuan
{"title":"Allelic transcriptomic profiling identifies the role of PRD-like homeobox genes in human embryonic-cleavage-stage arrest","authors":"Qianying Guo, Fanqing Xu, Shi Song, Siming Kong, Fan Zhai, Yuwen Xiu, Dandan Liu, Ming Li, Ying Lian, Ling Ding, Qian Liu, Ming Yang, Zhengrong Du, Nan Wang, Chuan Long, Xiaomeng Wang, Yuqian Wang, Zhiqiang Yan, Jie Qiao, Liying Yan, Peng Yuan","doi":"10.1016/j.devcel.2024.12.031","DOIUrl":"https://doi.org/10.1016/j.devcel.2024.12.031","url":null,"abstract":"Cleavage-stage arrest in human embryos substantially limits the success rate of infertility treatment, with maternal-to-zygotic transition (MZT) abnormalities being a potential contributor. However, the underlying mechanisms and regulators remain unclear. Here, by performing allelic transcriptome analysis on human preimplantation embryos, we accurately quantified MZT progression by allelic ratio and identified a fraction of 8-cell embryos, at the appropriate developmental time point and exhibiting normal morphology, were in transcriptionally arrested status. Furthermore, we identified PAIRED (PRD)-like homeobox transcription factors divergent paired-related homeobox (<em>DPRX</em>) and arginine-fifty homeobox (<em>ARGFX</em>) as factors involved in MZT, whose deficiency severely impairs MZT and lineage specification and leads to aberrant retention of histone acetylation. By reversing the acetylation retention caused by <em>DPRX</em> and <em>ARGFX</em> defects, embryonic arrest can be partially rescued. Our study identifies factors involved in human MZT and elucidates the etiology underlying human cleavage-stage arrest.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"21 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信