{"title":"Solution-Processed Sterically Hindered Donor–Acceptor Small Molecules as Molecular Floating-Gates for High-Efficiency Ambipolar Charge Trapping Memory","authors":"Yuyu Liu, Zhen Shao, Yue Li, Jing Liu, Lingzhi Jin, Yiru Wang, Wen Li, Linghai Xie, Haifeng Ling","doi":"10.1002/aelm.202500095","DOIUrl":"https://doi.org/10.1002/aelm.202500095","url":null,"abstract":"The molecular floating-gate transistor memories are fabricated by a simple spinning-coating method using a small-molecule material spiro[fluorene-9,7′-dibenzo[c,h]acridine]-5′-one (SFDBAO) as the trapping element. The molecule with donor–acceptor (D–A) structures contains naphthylamine and quinone-like structures, which can serve as trapping sites for hole and electron integration. Combined with the steric hindrance effect of the molecule itself, the pentacene (PEN)-based transistor memory device with solution-processed SFDBAO shows excellent charge-trapping ability, including high hole trapping efficiency (3.43 × 10<sup>13</sup> cm<sup>−2</sup> V<sup>−1</sup> s<sup>−1</sup>), fast programming speed (≈1 ms), and ambipolar memory behavior with a large memory window (74.3 V). The optimized device based on the SFDBAO@polystyrene (SFDBAO@PS = 5:1) film exhibits reliable endurance characteristic (>10<sup>3</sup> cycles) and good charge retention (>2 × 10<sup>4</sup> s). These results suggest that the high-performance ambipolar OFET memory can be achieved through a small-molecule material by rational molecular design.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"99 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ji-Eun Yeo, Joo Hwan Ko, Seung Hyeon Lee, Young Min Song
{"title":"Wearable Image-Based Colorimetric Sensor for Real-Time Gas Detection with High Chromaticity","authors":"Ji-Eun Yeo, Joo Hwan Ko, Seung Hyeon Lee, Young Min Song","doi":"10.1002/aelm.202400977","DOIUrl":"https://doi.org/10.1002/aelm.202400977","url":null,"abstract":"Flexible gas sensing technologies are essential for a wide range of environments and applications, from wearable devices to large-scale industrial systems. Among various approaches, colorimetric sensing stands out for its distinct advantages, including energy-free operation, intuitive visual feedback, and high resistance to environmental disturbances. Leveraging ultrathin resonators, colorimetric sensing achieves enhanced chromaticity and angular stability. In this study, a flexible colorimetric gas sensor is introduced based on a resonator array integrated with polyvinyl alcohol (PVA). This sensor achieves nearly 100% coverage of the standard RGB color gamut, enabling precise and visually distinguishable gas detection. Fabricated on a flexible substrate, it demonstrates remarkable angular robustness, maintaining consistent color under incident light angle variations of up to 60°. This capability, combined with rapid response times of 180 ms for PVA swelling and 210 ms for shrinking, highlights the sensor's adaptability for diverse applications, including wearable devices and industrial-scale monitoring. Furthermore, the sensor is evaluated under various volatile organic compounds (VOCs) and imaging conditions, showcasing its potential for image-based analysis and accurate VOC detection. Notably, it demonstrated the ability to detect VOC concentrations that are indistinguishable using a single sensor by simultaneously analyzing data from four sensor arrays.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"183 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxiao Guan, Boxiang Zhang, Yunong Xie, Chuanhong Jin
{"title":"Influence of Electron Beam Irradiation on Network Carbon Nanotube Films Based Field Effect Transistors","authors":"Xiaoxiao Guan, Boxiang Zhang, Yunong Xie, Chuanhong Jin","doi":"10.1002/aelm.202500048","DOIUrl":"https://doi.org/10.1002/aelm.202500048","url":null,"abstract":"Semiconducting single-walled carbon nanotube random network thin films (network CNTs) hold promising applications in nanoelectronic devices. However, exposure to electron beam irradiation during characterization and fabrication of network CNTs via tools like scanning electron microscope (SEM) and e-beam lithography (EBL) is often unavoidable and may degrade network CNT field effect transistors (FETs). This study investigates the influences of SEM electron beam irradiation on network CNT FETs, focusing on dose, energy, and dose rate, with the on-state current (<i>I</i><sub>on</sub>) as the primary metric. At lower doses (≤7.2 × 10<sup>14</sup> e cm<sup>−2</sup>), <i>I</i><sub>on</sub> exhibits a temporary reduction, while recovering mostly within 60 min in the ambient environment. At higher doses (>2.9 × 10<sup>15</sup> e cm<sup>−2</sup>), <i>I</i><sub>on</sub> decreases significantly and persistently. The observed phenomena can be attributed to the charging of the SiO<sub>2</sub> substrate and defect formation in the SiO<sub>2</sub> substrate. The findings provide insights for optimizing electron beam-based techniques in the characterization of network CNT FETs and device fabrication.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"66 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143798041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yeong Jun Yun, Hyun Jin Kang, Chan Yun Bae, Gyu Heon Bae, Hyun Jin Lee, Ki Hoon Kim, Yeong Jun Jang, Tae Won Nam, Jung Woo Lee
{"title":"Flash-Thermal Reduction of Graphene Oxide with Flexible Electronics Platform for Highly Sensitive Wearable Temperature Sensor","authors":"Yeong Jun Yun, Hyun Jin Kang, Chan Yun Bae, Gyu Heon Bae, Hyun Jin Lee, Ki Hoon Kim, Yeong Jun Jang, Tae Won Nam, Jung Woo Lee","doi":"10.1002/aelm.202400984","DOIUrl":"https://doi.org/10.1002/aelm.202400984","url":null,"abstract":"Accurate and continuous temperature monitoring is essential for effective diagnosis and management of health conditions, particularly amid global challenges such as the COVID-19 pandemic and the rising prevalence of age-related diseases and cancer. However, conventional temperature-measuring devices suffer from inherent limitations, including rigidity, bulkiness, and insufficient sensitivity, making them unsuitable for long-term, real-time applications. To overcome these challenges, a highly sensitive and flexible temperature sensor utilizing partially reduced graphene oxide (PrGO) as the sensing material is developed. Graphene oxide (GO), characterized by disrupted sp<sup>2</sup> bonds and oxygen-rich functional groups that act as electron traps, undergoes controlled reduction to modulate its electrical and structural properties. In this study, by employing the flash-thermal reduction technique, the reduction degree of the GO with systematic analyses on conductivity and material stability is precisely adjusted. The optimized flash-thermal reduced graphene oxide based sensor exhibits exceptional flexibility, reversibility, high sensitivity (≈1.28% °C<sup>−1</sup>), excellent linearity (R<sup>2</sup> ≈ 0.999), long-term stability, and a rapid response time (≈0.6 s), outperforming conventional metal-based temperature sensors in sensitivity. These advancements highlight the transformative potential of flash-thermal reduction for next-generation wearable sensors, offering a lightweight, adaptable, and highly responsive platform for real-time medical monitoring and healthcare applications.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"59 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reversal of Spin-Torque Polarity with Inverting Current Vorticity in Composition-Graded Layer at the Ti/W Interface","authors":"Hayato Nakayama, Taisuke Horaguchi, Jun Uzuhashi, Cong He, Hiroaki Sukegawa, Tadakatsu Ohkubo, Seiji Mitani, Kazuto Yamanoi, Yukio Nozaki","doi":"10.1002/aelm.202400797","DOIUrl":"10.1002/aelm.202400797","url":null,"abstract":"<p>While compositional gradient-induced spin-current generation is explored, its microscopic mechanisms remain poorly understood. Here, the contribution of polarity of compositional gradient on spin-current generation is explored. A nanoscale compositional gradient, formed by in situ atomic diffusion of ultrathin Ti and W layers, is introduced between 10-nm-thick W and Ti layers. Spin-torque ferromagnetic resonance in ferromagnetic Ni<sub>95</sub>Cu<sub>5</sub> deposited on this gradient reveals that a moderate compositional gradient suppresses negative spin torque from the spin Hall effect in W. In contrast, reversing the Ti/W stacking order, which inverts the gradient, suppresses positive spin torque from the orbital Hall effect in Ti. These findings suggest that the sign of spin torque is governed by the polarity of compositional gradient, providing a novel strategy for efficient spin-torque generation without relying on materials with strong spin or orbital Hall effect.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 7","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400797","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143798005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artem Fediai, Franz Symalla, Tobias Neumann, Wolfgang Wenzel
{"title":"Using Dopants as Agents to Probe Key Electronic Properties of Organic Semiconductors","authors":"Artem Fediai, Franz Symalla, Tobias Neumann, Wolfgang Wenzel","doi":"10.1002/aelm.202400988","DOIUrl":"https://doi.org/10.1002/aelm.202400988","url":null,"abstract":"In organic electronics, conductivity doping is used primarily to eliminate charge injection barriers in organic light-emitting diodes, organic photovoltaics and other electronic devices. Therefore, research on conductivity doping is primarily focused on understanding and enhancing the properties of these doped layers. In contrast, this work shifts the focus from optimizing doped layers to leveraging the doping process as a tool for investigating fundamental material properties. Specifically, the dopant is used as an “agent” to enable the measurement of three critical parameters- ionization potential (IP), electron affinity (EA), and Coulomb interaction energy (<i>V</i><sub>C</sub>) – that govern dopant ionization and play central roles in organic electronic devices in general. While these parameters can be measured experimentally, conventional approaches often involve intricate or indirect methods, such as spectral deconvolution, which may introduce ambiguities or fail to represent bulk properties. Here it is shown how consolidating the experimental data and simulations on the dopant ionization fraction and doped-induced conductivity can be used to estimate the mean IP or EA of the embedded organic molecule, and <i>V</i><sub>C</sub> of the embedded charge-transfer complex. These results illustrate how measuring and simulating doped materials can provide access to the fundamental design parameters of organic electronic devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"23 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lanthanide-Doped Ga2O3: A Route to Bandgap Engineering for Ultraviolet Detection","authors":"Shunze Huang, Xuefang Lu, Yinlong Cheng, Jianzhong Xu, Xin Qian, Feng Huang, Richeng Lin","doi":"10.1002/aelm.202500030","DOIUrl":"https://doi.org/10.1002/aelm.202500030","url":null,"abstract":"The demand for next-generation wide bandgap semiconductors is driven by applications such as solar-blind ultraviolet detection and ultra-high power electronics, and gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) has emerged as a highly promising candidate material due to its ultra-wide bandgap, high intrinsic breakdown field strength, and quite significant ultraviolet absorption. However, the lack of doping engineering based on substituting isovalent elements to achieve bandgap tuning has limited the development of Ga<sub>2</sub>O<sub>3</sub> in ultraviolet detection. Here, the trivalent lanthanide elements are used as the homovalent substitution of gallium in Ga<sub>2</sub>O<sub>3</sub> to achieve effective regulation of the optical bandgap. The theoretical calculation shows that the doped lanthanide (Lu) introduces its 6s orbital electrons to the conduction band of Ga<sub>2</sub>O<sub>3</sub>, resulting in a significant shift of the conduction band. Furthermore, an ITO/Ga<sub>2</sub>O<sub>3</sub>:Ln/Au structure photodetector is prepared by Ga<sub>2</sub>O<sub>3</sub>:Lu thin films, which exhibits an ultra-low dark current (−2.09 × 10<sup>−</sup>¹<sup>3</sup> A) and a fast response speed (321/136.8 ms), demonstrating the great prospect of Ga<sub>2</sub>O<sub>3</sub>:Ln semiconductors in photoelectronics.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"73 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuo Wang, Zebin Kong, Jie Zhao, Shukai Guan, Ranran Zhao, Anan Ju, Kunshu Wang, Pengfei Lian
{"title":"Dopant Diffusion-Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped Polysilicon","authors":"Shuo Wang, Zebin Kong, Jie Zhao, Shukai Guan, Ranran Zhao, Anan Ju, Kunshu Wang, Pengfei Lian","doi":"10.1002/aelm.202500046","DOIUrl":"https://doi.org/10.1002/aelm.202500046","url":null,"abstract":"This study identifies a novel failure mode in silicon dioxide/silicon nitride (SiO₂/Si₃N₄) capacitors caused by dopant diffusion in heavily doped polysilicon substrates. Under identical thermal oxidation conditions, the interfacial oxide layer is significantly thinner on p type polysilicon compared to n type polysilicon. N type capacitors exhibit superior performance, with a breakdown voltage of 88 V, whereas p type capacitors demonstrate lower breakdown voltage of 51 V. The time-dependent dielectric breakdown (TDDB) analysis indicates that n type capacitors exhibit lifetimes exceeding 10 years under high-voltage stress at 125 °C. In contrast, p type capacitors demonstrate rapid failure when subjected to a voltage of 30 V. Conduction analysis reveals that Poole–Frenkel conduction dominates the stacked dielectric layers, but thinning of the interfacial oxide layer significantly increases Fowler–Nordheim tunneling, ultimately driving stacked dielectric breakdown. These findings highlight the critical role of dopant diffusion in interfacial oxide reliability and provide insights for improving the performance of high-k stacked dielectrics in heavily doped polysilicon.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"59 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly Stretchable LED Display Using Liquid Metal and Molybdenum-Barriered Multilayer Electrodes with Long-Term Reliability (Adv. Electron. Mater. 4/2025)","authors":"Masashi Miyakawa, Hiroshi Tsuji, Tatsuya Takei, Toshihiro Yamamoto, Yoshihide Fujisaki, Mitsuru Nakata","doi":"10.1002/aelm.202570012","DOIUrl":"10.1002/aelm.202570012","url":null,"abstract":"<p><b>Highly Stretchable LED Displays</b></p><p>In article number 2400676, Yang Bai and co-workers demonstrate a highly stretchable LED display using liquid metal and molybdenum-barriered multilayer electrodes. This technology enables high reliability as well as high stretchability under repeated deformation of 12,000 times and long-term stability over 300 days.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202570012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143767036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Wang, Zhuowen Zou, Jiajun Zhu, Dandan Gao, Wanbiao Hu
{"title":"Configuration and Charge Dynamics of Defect-Cluster-Dipoles in CaTiO3 for Enhanced Permittivity","authors":"Jian Wang, Zhuowen Zou, Jiajun Zhu, Dandan Gao, Wanbiao Hu","doi":"10.1002/aelm.202500145","DOIUrl":"https://doi.org/10.1002/aelm.202500145","url":null,"abstract":"The wealth of complex defects induces attractive functionalities and structural variations in materials. This renders engineering defect states, as well as building up a defect-property relationship, a central subject, but it remains highly challenging because the configurations and charge dynamics of the involved defect systems are hardly explored and thus unclear experimentally. Herein, the defect-dipole-cluster in La-doped CaTiO<sub>3</sub> and, more importantly, its dielectric response process is clarified. Through combined HAADF-STEM, DFT calculation, dielectric, and photoluminescence (PL) spectroscopy, the defect configuration is identified to be <i>V</i><sub><b>Ca</b></sub> − <b>O</b><sup>−</sup> − <b>La</b><sub><b>Ca</b></sub> type defect-cluster-dipole. The electron–hole recombination from the Ti<sup>3+</sup> and O<sup>−</sup> states dominates the dielectric relaxation process, as revealed by the similar relaxation frequencies of dielectric response and photoluminescence emission. These findings experimentally demonstrate property tailoring involved in defect-cluster-dipole, providing crucial insights for establishing the defect-property relationship in dielectric materials.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"21 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143767037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}