Sheng‐Ti Chung, Catherine Langpoklakpam, Yicong Dong, Yi‐Kai Hsiao, Shaloo Rakheja, Hao‐Chung Kuo, Dong‐Sing Wuu, Kenneth Järrendahl, Ching‐Lien Hsiao, Edmund Dobročka, Milan Ťapajna, Filip Gucmann, Ray‐Hua Horng
{"title":"AlGaO间隔层对β‐氧化镓金属氧化物半导体场效应晶体管性能的影响","authors":"Sheng‐Ti Chung, Catherine Langpoklakpam, Yicong Dong, Yi‐Kai Hsiao, Shaloo Rakheja, Hao‐Chung Kuo, Dong‐Sing Wuu, Kenneth Järrendahl, Ching‐Lien Hsiao, Edmund Dobročka, Milan Ťapajna, Filip Gucmann, Ray‐Hua Horng","doi":"10.1002/aelm.202500291","DOIUrl":null,"url":null,"abstract":"This study utilizes a metalorganic chemical vapor deposition system to grow a β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> epitaxial layer on a sapphire substrate and fabricate lateral β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> metal‐oxide‐semiconductor field‐effect transistors (MOSFETs). To enhance the performance of the β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> MOSFET, a (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> spacer layer is introduced, with its aluminum (Al) composition modulated through energy band engineering. Three epitaxial samples are designed: a reference sample (without a spacer layer) and samples with (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layers containing different Al compositions, specifically (Al<jats:sub>0.14</jats:sub>Ga<jats:sub>0.86</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and (Al<jats:sub>0.21</jats:sub>Ga<jats:sub>0.79</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The influence of the Al composition in the (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layer on the two dimensional electron gas (2DEG) is investigated. The results show that a lower Al composition increases the carrier concentration in the 2DEG, boosting the saturation current (I<jats:sub>D,sat</jats:sub>) from 2.94 to 7.88 mA mm<jats:sup>−1</jats:sup>—a significant 168% improvement in the (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> stacked epitaxy structure. For the high‐Al‐composition barrier layer ((Al<jats:sub>0.21</jats:sub>Ga<jats:sub>0.79</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>), the higher energy barrier slightly reduces the turn‐on current but effectively increases the breakdown voltage, from 210 to 576 V—an improvement of 188%. These improvements result from the higher energy barrier of the β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/(Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> interface, which reduced the leakage current density. By optimizing the Al composition in (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, transistors suitable for either high performance or high breakdown voltage are successfully produced.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"3 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the AlGaO Spacer Layer on the Performance of β‐Gallium Oxide Metal–Oxide Semiconductor Field Effect Transistors\",\"authors\":\"Sheng‐Ti Chung, Catherine Langpoklakpam, Yicong Dong, Yi‐Kai Hsiao, Shaloo Rakheja, Hao‐Chung Kuo, Dong‐Sing Wuu, Kenneth Järrendahl, Ching‐Lien Hsiao, Edmund Dobročka, Milan Ťapajna, Filip Gucmann, Ray‐Hua Horng\",\"doi\":\"10.1002/aelm.202500291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study utilizes a metalorganic chemical vapor deposition system to grow a β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> epitaxial layer on a sapphire substrate and fabricate lateral β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> metal‐oxide‐semiconductor field‐effect transistors (MOSFETs). To enhance the performance of the β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> MOSFET, a (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> spacer layer is introduced, with its aluminum (Al) composition modulated through energy band engineering. Three epitaxial samples are designed: a reference sample (without a spacer layer) and samples with (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layers containing different Al compositions, specifically (Al<jats:sub>0.14</jats:sub>Ga<jats:sub>0.86</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and (Al<jats:sub>0.21</jats:sub>Ga<jats:sub>0.79</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The influence of the Al composition in the (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layer on the two dimensional electron gas (2DEG) is investigated. The results show that a lower Al composition increases the carrier concentration in the 2DEG, boosting the saturation current (I<jats:sub>D,sat</jats:sub>) from 2.94 to 7.88 mA mm<jats:sup>−1</jats:sup>—a significant 168% improvement in the (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> stacked epitaxy structure. For the high‐Al‐composition barrier layer ((Al<jats:sub>0.21</jats:sub>Ga<jats:sub>0.79</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>), the higher energy barrier slightly reduces the turn‐on current but effectively increases the breakdown voltage, from 210 to 576 V—an improvement of 188%. These improvements result from the higher energy barrier of the β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/(Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> interface, which reduced the leakage current density. By optimizing the Al composition in (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, transistors suitable for either high performance or high breakdown voltage are successfully produced.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500291\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500291","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究利用金属有机化学气相沉积系统在蓝宝石衬底上生长β - Ga2O3外延层,并制造横向β - Ga2O3金属氧化物半导体场效应晶体管(mosfet)。为了提高β‐Ga2O3 MOSFET的性能,引入了(AlxGa1‐x)2O3间隔层,并通过能带工程对其铝(Al)成分进行了调制。设计了三种外延样品:一个参考样品(没有间隔层)和含有不同Al成分的(AlxGa1‐x)2O3层的样品,特别是(Al0.14Ga0.86)2O3和(Al0.21Ga0.79)2O3。研究了(AlxGa1‐x)2O3层中Al成分对二维电子气(2DEG)的影响。结果表明,较低的Al组分增加了2DEG中的载流子浓度,使饱和电流(ID,sat)从2.94 mA mm−1提高到7.88 mA mm−1,(AlxGa1‐x)2O3/β‐Ga2O3堆叠外延结构显著提高了168%。对于高Al成分势垒层((Al0.21Ga0.79)2O3),高能量势垒略微降低了导通电流,但有效地提高了击穿电压,从210 v提高到576 v,提高了188%。这些改进是由于β - Ga2O3/(AlxGa1 - x)2O3界面具有更高的能垒,从而降低了泄漏电流密度。通过优化(AlxGa1‐x)2O3中的Al成分,可以成功生产出高性能或高击穿电压的晶体管。
Effect of the AlGaO Spacer Layer on the Performance of β‐Gallium Oxide Metal–Oxide Semiconductor Field Effect Transistors
This study utilizes a metalorganic chemical vapor deposition system to grow a β‐Ga2O3 epitaxial layer on a sapphire substrate and fabricate lateral β‐Ga2O3 metal‐oxide‐semiconductor field‐effect transistors (MOSFETs). To enhance the performance of the β‐Ga2O3 MOSFET, a (AlxGa1‐x)2O3 spacer layer is introduced, with its aluminum (Al) composition modulated through energy band engineering. Three epitaxial samples are designed: a reference sample (without a spacer layer) and samples with (AlxGa1‐x)2O3 layers containing different Al compositions, specifically (Al0.14Ga0.86)2O3 and (Al0.21Ga0.79)2O3. The influence of the Al composition in the (AlxGa1‐x)2O3 layer on the two dimensional electron gas (2DEG) is investigated. The results show that a lower Al composition increases the carrier concentration in the 2DEG, boosting the saturation current (ID,sat) from 2.94 to 7.88 mA mm−1—a significant 168% improvement in the (AlxGa1‐x)2O3/β‐Ga2O3 stacked epitaxy structure. For the high‐Al‐composition barrier layer ((Al0.21Ga0.79)2O3), the higher energy barrier slightly reduces the turn‐on current but effectively increases the breakdown voltage, from 210 to 576 V—an improvement of 188%. These improvements result from the higher energy barrier of the β‐Ga2O3/(AlxGa1‐x)2O3 interface, which reduced the leakage current density. By optimizing the Al composition in (AlxGa1‐x)2O3, transistors suitable for either high performance or high breakdown voltage are successfully produced.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.