{"title":"Wearable PZT Piezoelectric Sensor Device for Accurate Arterial Pressure Pulse Waveform Measurement","authors":"Minyu Li, Jun Aoyama, Koya Inayoshi, Hedong Zhang","doi":"10.1002/aelm.202400852","DOIUrl":"https://doi.org/10.1002/aelm.202400852","url":null,"abstract":"Accurate, non-invasive, and wearable measurement of arterial pressure pulse waveforms is crucial for cardiovascular healthcare, yet remains challenging due to the lack of effective sensors and mounting methods. This study introduces highly sensitive, flexible PZT piezoelectric sensors and an optimized mounting method for accurate radial pulse waveform measurement in natural wrist positions. The sensors incorporate a PZT thin film directly fabricated on a flexible substrate with easily produced parallel-plate electrodes, requiring no poling treatment. The high-quality PZT films exhibit low charge leakage, enabling measurement even at 1 Hz. To ensure comfort and accuracy, a foam pad is used for optimal sensor mounting and investigate how its stress–strain properties affect pulse detection. The optimized sensor device captures waveforms closely matching those from a high-accuracy capacitive force sensor. Despite smaller size and lower mounting load, the sensors show four times the sensitivity of polyvinylidene fluoride sensors and successfully detect age-related changes in waveforms. Additionally, a deep learning model is developed to enable calibration-free conversion of sensor signals to blood pressure (BP), achieving a mean absolute error of 5.82 and 4.60 mmHg for systolic and diastolic BP. These results highlight the potential of this technology for effective cardiovascular monitoring in daily life.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"24 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Printed Optoelectronic Memories Using Gr/WS2 Nanostructured Composite Ink for Retina-Inspired Vision Persistent Synapses","authors":"Jiahui Bai, Qiuyan Wang, Qiaoqiao Zheng, Dong Liu, Hongbing Zhan, Renjing Xu, Jiajie Pei","doi":"10.1002/aelm.202400760","DOIUrl":"https://doi.org/10.1002/aelm.202400760","url":null,"abstract":"The rapid advancement of neuromorphic computing and machine vision drives the need for optoelectronic memories that mimic neural and visual systems, integrating optical sensing, data storage, and processing. Traditional fabrication methods are often complex, multistep processes that struggle to achieve lightweight, scalable, and flexible designs. This limitation highlights the need for alternative approaches like printing technologies to enable flexible optoelectronic memory development. Here, a novel approach is presented to print optoelectronic memories using graphene (Gr)/WS<sub>2</sub> nanostructured composite ink. This composite ink utilizes Gr nanosheets as conductive channels and defect sites in WS<sub>2</sub> as charge capture centers, forming local heterojunctions that enable efficient photoelectric storage. Two types of Gr/WS<sub>2</sub> composite inks are developed, tested, and compared with pure Gr ink. The findings reveal that the Gr/WS<sub>2</sub> nanocomposite ink with enhanced edge states exhibits superior memory performance. Devices print using this ink demonstrated the ability to store visual information in both single-pulse and multi-pulse modes, reflecting potential applications in retina-inspired visual persistence and neuromorphic computing. This work highlights the promise of printed 2D material-based optoelectronic memories for advancing scalable, low-cost, and flexible electronic devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"39 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Longzhu Cai, Jianjing Zhou, Jiaqi Zhou, Lei Zhang, Zhi Hao Jiang, Wei Hong
{"title":"Broadband, Single-Layered, and Optically Transparent Reflective Phase-Shifting-Surface Array for Beam Manipulation and Enhanced Wireless Communications","authors":"Longzhu Cai, Jianjing Zhou, Jiaqi Zhou, Lei Zhang, Zhi Hao Jiang, Wei Hong","doi":"10.1002/aelm.202400827","DOIUrl":"https://doi.org/10.1002/aelm.202400827","url":null,"abstract":"Optically transparent electromagnetic devices play a crucial role in modern society, yet conventional optically transparent millimeter-wave devices suffer from high return loss, limited phase shift, narrow bandwidth, high profile, and low optical transparency. Current materials, fabrication processes, and design methodologies restrict the development of high-performance optically transparent reflective phase-shifting-surface arrays or reflectarrays. To address this, a design concept for broadband, single-layered, and optically transparent reflectarray antennas is reported, which can be integrated with glass windows for beam manipulation and enhanced indoor signal coverage and wireless communications. The proposed reflectarray element employs a single-layered cyclic olefin copolymer (COC) medium as the dielectric substrate, with fine metal line (FML) patterns under 50 µm width to create multi-resonant structures for phase range broadening. This architecture combines multi-resonant phase-shifting elements with minimal FML structures and low-loss COC substrate, achieving exceptional antenna performance while ensuring high optical transparency. Wireless communication transmission experiments validate the functionality and performance advantages of the fabricated optically transparent reflectarray. These results substantiate the immense potential and broad application prospects of the novel optically transparent COC dielectric material, the FML structure, and the proposed design concepts and methods in advancing high-performance optically transparent reflectarrays and related communication systems.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"26 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Faudou, Mohammed Benwadih, Abdelkader Aliane, Christine Revenant, Daniel Grinberg, Minh‐Quyen Le, Pierre‐Jean Cottinet
{"title":"Double‐Sided Conformable Piezoelectric Force Sensor with Enhanced Performance and Bending Correction","authors":"Joseph Faudou, Mohammed Benwadih, Abdelkader Aliane, Christine Revenant, Daniel Grinberg, Minh‐Quyen Le, Pierre‐Jean Cottinet","doi":"10.1002/aelm.202400456","DOIUrl":"https://doi.org/10.1002/aelm.202400456","url":null,"abstract":"Flexible piezoelectric devices have gained considerable interest due to their potential for new applications, particularly in wearable technology. However, a significant challenge remains in measuring low forces on nonplanar and deformable surfaces. Indeed, conformability on complex surfaces induces bending stresses in the piezoelectric sensors, interfering with the measurement of compressive force. Yet such measurements can be valuable, especially in medical applications that involve assessing forces on soft tissues. This study presents an innovative highly sensitive conformable sensor based on a thin film of P(VDF‐TrFE) copolymer. The selection of the substrate is essential for ensuring the device's conformability, but it is also demonstrated that it can provide a substantial improvement in performance if its Young's modulus is lower than that of the active polymer. The effective piezoelectric charge coefficient of a sensor on TPU substrate is measured equal to −340 pC.N<jats:sup>−1</jats:sup>, representing a tenfold increase in the theoretical compression sensitivity of P(VDF‐TrFE). Additionally, a double‐sided structure to eliminate the contribution of bending in the piezoelectric signal and tackle the challenge of conformability on complex surfaces is developed. Overall, the proposed device shows promising results for measuring low forces applied to soft biological tissues such as skin or heart valve leaflets.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"34 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lauren R. Miller, Alejandro Galán‐González, Ben Nicholson, Leon Bowen, Guillaume Monier, Robert J. Borthwick, Freddie White, Mana Saeed, Richard L. Thompson, Christine Robert‐Goumet, Del Atkinson, Dagou A. Zeze, Mujeeb U. Chaudhry
{"title":"Control Strategies for Solution‐Processed ZTO‐Based Thin‐Film Transistors Tailored Toward Volatile Organic Compound Detection","authors":"Lauren R. Miller, Alejandro Galán‐González, Ben Nicholson, Leon Bowen, Guillaume Monier, Robert J. Borthwick, Freddie White, Mana Saeed, Richard L. Thompson, Christine Robert‐Goumet, Del Atkinson, Dagou A. Zeze, Mujeeb U. Chaudhry","doi":"10.1002/aelm.202400810","DOIUrl":"https://doi.org/10.1002/aelm.202400810","url":null,"abstract":"A breakthrough in the fabrication of amorphous Zn‐Sn‐O (ZTO)‐based thin‐film transistors (TFTs) is presented for volatile organic compound (VOC) detection. The incorporation of highly abundant materials offers substantial economic and environmental benefits. However, analyses for the design of a multilayer channel are still limited. This work demonstrates that the chemical environment influences ZTO‐based TFTs' carrier transport properties and can be tailored for detecting specific VOCs, ensuring high specificity in diagnosing life‐threatening conditions through simple breath analysis. A low‐cost, high‐throughput, fully solution‐processed ZTO and ZnO multilayering strategy is adopted. The in‐depth compositional and morphological analyses reveal that low surface roughness, excellent Zn and Sn intermixing, high oxygen vacancy (31.2%), and M‐OH bonding (11.4%) contents may account for the outstanding electrical and sensing performance of ZTO‐ZTO TFTs. Notably, these TFTs achieve near‐zero threshold voltage (2.20 V), excellent switching properties (10<jats:sup>7</jats:sup>), and high mobility (10 cm<jats:sup>2</jats:sup>V<jats:sup>−1</jats:sup>s<jats:sup>−1</jats:sup>). This results in high responsivity to alcohol vapors at low‐voltage operation with peak responsivity for methanol (<jats:italic>R</jats:italic> = 1.08 × 10<jats:sup>6</jats:sup>) over two orders of magnitude greater than acetone. When miniaturized, these devices serve as easy‐to‐operate sensors, capable of detecting VOCs with high specificity in ambient conditions.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"15 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taiming Ji, Zhixu Wu, Pengfei Xiang, Yu Lu, Sisi Liu, Rongxin Tang, Yuhao Wang, Yong Xia
{"title":"High-Efficiency PbS Quantum Dots Infrared Solar Cells via Numerical Simulation and Experimental Optimization","authors":"Taiming Ji, Zhixu Wu, Pengfei Xiang, Yu Lu, Sisi Liu, Rongxin Tang, Yuhao Wang, Yong Xia","doi":"10.1002/aelm.202400784","DOIUrl":"https://doi.org/10.1002/aelm.202400784","url":null,"abstract":"Low-bandgap lead sulfide quantum dots (PbS QDs) can efficiently harness the infrared (IR) light in the solar spectrum beyond 1100 nm, showing great application potential in the bottom subcells of tandem solar cells. However, achieving further efficiency improvements in PbS QDs IR solar cells still faces many challenges. In this work, the effects of the absorber layer thickness, the carrier mobility in the absorber layer, the defect density in the absorber layer and at the absorber/electron transfer layer (ETL) interface, and the doping density of the ETL and hole transfer layer (HTL) on the performance of PbS QDs (≈0.95 eV) IR solar cells are systematically investigated through SCAPS-1D simulation. A theoretical efficiency of 16.95% and 2.15% is calculated for PbS QDs IR solar cells under AM 1.5 and 1100 nm-filtered illumination, respectively. Based on the simulation results, the corresponding PbS QDs IR solar cells are fabricated with an efficiency of 11.53% under AM 1.5 illumination, a remarkable 1100 nm-filtered efficiency of 1.30%, and a high external quantum efficiency of 70.50% at 1290 nm. Hence, these findings will accelerate the optimization of the performance of PbS QDs IR solar cells approaching their theoretical efficiency limit.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"74 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wojciech Wieczorek, Tomasz Mazur, Weronika Górka-Kumik, Paweł Dąbczyński, Agnieszka Podborska, Andrzej Bernasik, Michał Szuwarzyński
{"title":"Ultrathin High-Efficiency Zener Diode Fabricated Using Organized ZnS Nanoparticles in Surface-Grafted Poly(methacrylic acid) Matrix","authors":"Wojciech Wieczorek, Tomasz Mazur, Weronika Górka-Kumik, Paweł Dąbczyński, Agnieszka Podborska, Andrzej Bernasik, Michał Szuwarzyński","doi":"10.1002/aelm.202400772","DOIUrl":"https://doi.org/10.1002/aelm.202400772","url":null,"abstract":"Here, the fabrication method of ultrathin Zener diodes is presented utilizing a novel hybrid system of zinc sulfide (ZnS) nanoparticles embedded within a poly(methacrylic acid) (PMAA) matrix, surface-grafted via ARGET-ATRP polymerization. The controlled polymerization method facilitates precise control over layer thickness, while the in situ synthesis of ZnS nanoparticles ensures uniform coverage throughout the polymer matrix. The obtained hybrid systems with nanometric thickness (<40 nm) are characterized by diode conductivity with a clear breakdown characteristic of the Zener system. The obtained ultra-thin layers on p-doped silicon, in addition to their electrical characteristics, are studied using an atomic force microscope (AFM) and secondary ion mass spectrometry (SIMS) to examine the structure and composition of a hybrid polymer-nanoparticle system.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"23 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minye Yang, Lukang Wang, Zhilu Ye, Qi Zhong, Baolong Jian, Xiaohui Zhang, Şahin K. Özdemir, Ming Liu
{"title":"Electronic CPA‐Laser Having Enhanced Sensitivity and Tunability","authors":"Minye Yang, Lukang Wang, Zhilu Ye, Qi Zhong, Baolong Jian, Xiaohui Zhang, Şahin K. Özdemir, Ming Liu","doi":"10.1002/aelm.202400722","DOIUrl":"https://doi.org/10.1002/aelm.202400722","url":null,"abstract":"Exceptional point degeneracies, which are spectral singularities of non‐Hermitian systems, have been widely utilized for building optical, mechanical, or electrical sensing systems with much larger responses than those utilizing Hermitian degeneracies. However, such systems suffer from enhanced noise, which negates the enhanced response and thus does not provide any improvement in signal‐to‐noise ratio. Recently, the coherent perfect absorber (CPA)‐laser, which also utilizes non‐Hermitian singularity, has been used in sensing systems resulting in better noise robustness and enhanced responsivity. Nonetheless, CPA‐laser (CPAL) implementation requires all system parameters to be immutable, which hinders progress toward their practical use for sensing purposes. Here, a tunable electronic CPA‐laser is reported that overcomes these obstacles providing ultrahigh sensitivity as validated in the experiments for monitoring arterial pressure and respiration. This CPAL sensing scheme utilizes inductive coupling between gain and loss sub‐components and thereby the whole system can be decomposed into an active reader and a passive sensor, which enables better tunability and performance compared to previously reported CPAL systems. Moreover, the proposed CPAL system exhibits better performance compared to exceptional point‐based systems having a similar circuit structure. This research paves the way for exploring electronic CPAL for sensing applications and may have a profound impact on the next‐generation, ultrasensitive electromagnetic sensing system.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"26 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sjoerd Telkamp, Tommaso Antonelli, Clemens Todt, Manuel Hinderling, Marco Coraiola, Daniel Haxell, Sofieke C. ten Kate, Deividas Sabonis, Peng Zeng, Rüdiger Schott, Erik Cheah, Christian Reichl, Fabrizio Nichele, Filip Krizek, Werner Wegscheider
{"title":"Development of a Nb-Based Semiconductor-Superconductor Hybrid 2DEG Platform","authors":"Sjoerd Telkamp, Tommaso Antonelli, Clemens Todt, Manuel Hinderling, Marco Coraiola, Daniel Haxell, Sofieke C. ten Kate, Deividas Sabonis, Peng Zeng, Rüdiger Schott, Erik Cheah, Christian Reichl, Fabrizio Nichele, Filip Krizek, Werner Wegscheider","doi":"10.1002/aelm.202400687","DOIUrl":"https://doi.org/10.1002/aelm.202400687","url":null,"abstract":"Semiconductor-superconductor hybrid materials are used as a platform to realize Andreev bound states, which hold great promise for quantum applications. These states require transparent interfaces between the semiconductor and superconductor, which are typically realized by in-situ deposition of an Al superconducting layer. Here a hybrid material is presented, based on an InAs 2D electron gas (2DEG) combined with in-situ deposited Nb and NbTi superconductors, which offer a larger operating range in temperature and magnetic field due to their larger superconducting gap. The inherent difficulty associated with the formation of an amorphous interface between III-V semiconductors and Nb-based superconductors is addressed by introducing a 7 nm Al interlayer. The Al interlayer provides an epitaxial connection between an in-situ magnetron sputtered Nb or NbTi thin film and a shallow InAs 2DEG. This metal-to-metal epitaxy is achieved by optimization of the material stack and results in an induced superconducting gap of approximately 1 meV, determined from transport measurements of superconductor-semiconductor Josephson junctions. This induced gap is approximately five times larger than the values reported for Al-based hybrid materials and indicates the formation of highly-transparent interfaces that are required in high-quality hybrid material platforms.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"2 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preetam Dacha, Anju Kumari R, Darius Pohl, Angelika Wrzesińska-Lashkova, Alexander Tahn, Bernd Rellinghaus, Yana Vaynzof, Stefan C. B. Mannsfeld
{"title":"Solution Shearing of Sustainable Aluminum Oxide Thin Films for Compliance-Free, Voltage-Regulated Multi-Bit Memristors","authors":"Preetam Dacha, Anju Kumari R, Darius Pohl, Angelika Wrzesińska-Lashkova, Alexander Tahn, Bernd Rellinghaus, Yana Vaynzof, Stefan C. B. Mannsfeld","doi":"10.1002/aelm.202400698","DOIUrl":"https://doi.org/10.1002/aelm.202400698","url":null,"abstract":"In this work, solution shearing approach is used to fabricate sustainable, de-ionized water based 15 nm aluminum oxide (AlO<i><sub>x</sub></i>) thin films employing a combination of low-temperature thermal annealing and deep UV exposure techniques. Their electrical performance is evaluated for memristive technology, demonstrating bipolar resistive switching and a stable ON/OFF ratio of ≈10<sup>2</sup>. Devices exhibit endurance for 100 cycles and retention exceeding 40 h. Moreover, the device showcases eight voltage-regulated resistive switching states, equivalent to 4 bits. All multilevel states exhibit a significant increase in the memory window and stable retention for 3 h. This study illustrates that the resistive switching results from the conductive filament development is facilitated by oxygen vacancies. Charge conduction modeling of <i>I</i>–<i>V</i> characteristics reveals that the mechanism is dominated by space charge-limited conduction (SCLC) during filament formation, followed by Ohmic conduction. A negative differential resistance (NDR) effect occurs due to the sudden rupture of the filament when the polarity is reversed. The voltage-regulated multilevel behavior can be attributed to the enhancement of the pre-existing oxygen vacancy conductive filament or the formation of multiple filaments. Overall, the bilayer AlO<i><sub>x</sub></i> thin film demonstrates significant potential for application in multibit-level memory storage devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"2 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}