Sheng‐Ti Chung, Catherine Langpoklakpam, Yicong Dong, Yi‐Kai Hsiao, Shaloo Rakheja, Hao‐Chung Kuo, Dong‐Sing Wuu, Kenneth Järrendahl, Ching‐Lien Hsiao, Edmund Dobročka, Milan Ťapajna, Filip Gucmann, Ray‐Hua Horng
{"title":"Effect of the AlGaO Spacer Layer on the Performance of β‐Gallium Oxide Metal–Oxide Semiconductor Field Effect Transistors","authors":"Sheng‐Ti Chung, Catherine Langpoklakpam, Yicong Dong, Yi‐Kai Hsiao, Shaloo Rakheja, Hao‐Chung Kuo, Dong‐Sing Wuu, Kenneth Järrendahl, Ching‐Lien Hsiao, Edmund Dobročka, Milan Ťapajna, Filip Gucmann, Ray‐Hua Horng","doi":"10.1002/aelm.202500291","DOIUrl":null,"url":null,"abstract":"This study utilizes a metalorganic chemical vapor deposition system to grow a β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> epitaxial layer on a sapphire substrate and fabricate lateral β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> metal‐oxide‐semiconductor field‐effect transistors (MOSFETs). To enhance the performance of the β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> MOSFET, a (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> spacer layer is introduced, with its aluminum (Al) composition modulated through energy band engineering. Three epitaxial samples are designed: a reference sample (without a spacer layer) and samples with (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layers containing different Al compositions, specifically (Al<jats:sub>0.14</jats:sub>Ga<jats:sub>0.86</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and (Al<jats:sub>0.21</jats:sub>Ga<jats:sub>0.79</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The influence of the Al composition in the (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layer on the two dimensional electron gas (2DEG) is investigated. The results show that a lower Al composition increases the carrier concentration in the 2DEG, boosting the saturation current (I<jats:sub>D,sat</jats:sub>) from 2.94 to 7.88 mA mm<jats:sup>−1</jats:sup>—a significant 168% improvement in the (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> stacked epitaxy structure. For the high‐Al‐composition barrier layer ((Al<jats:sub>0.21</jats:sub>Ga<jats:sub>0.79</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>), the higher energy barrier slightly reduces the turn‐on current but effectively increases the breakdown voltage, from 210 to 576 V—an improvement of 188%. These improvements result from the higher energy barrier of the β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/(Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> interface, which reduced the leakage current density. By optimizing the Al composition in (Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, transistors suitable for either high performance or high breakdown voltage are successfully produced.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"3 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500291","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study utilizes a metalorganic chemical vapor deposition system to grow a β‐Ga2O3 epitaxial layer on a sapphire substrate and fabricate lateral β‐Ga2O3 metal‐oxide‐semiconductor field‐effect transistors (MOSFETs). To enhance the performance of the β‐Ga2O3 MOSFET, a (AlxGa1‐x)2O3 spacer layer is introduced, with its aluminum (Al) composition modulated through energy band engineering. Three epitaxial samples are designed: a reference sample (without a spacer layer) and samples with (AlxGa1‐x)2O3 layers containing different Al compositions, specifically (Al0.14Ga0.86)2O3 and (Al0.21Ga0.79)2O3. The influence of the Al composition in the (AlxGa1‐x)2O3 layer on the two dimensional electron gas (2DEG) is investigated. The results show that a lower Al composition increases the carrier concentration in the 2DEG, boosting the saturation current (ID,sat) from 2.94 to 7.88 mA mm−1—a significant 168% improvement in the (AlxGa1‐x)2O3/β‐Ga2O3 stacked epitaxy structure. For the high‐Al‐composition barrier layer ((Al0.21Ga0.79)2O3), the higher energy barrier slightly reduces the turn‐on current but effectively increases the breakdown voltage, from 210 to 576 V—an improvement of 188%. These improvements result from the higher energy barrier of the β‐Ga2O3/(AlxGa1‐x)2O3 interface, which reduced the leakage current density. By optimizing the Al composition in (AlxGa1‐x)2O3, transistors suitable for either high performance or high breakdown voltage are successfully produced.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.