利用Cs2TlAsI6双卤化物钙钛矿推进太阳能:高效太阳能电池的模拟驱动方法

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Md. Tarekuzzaman, Khandoker Isfaque Ferdous Utsho
{"title":"利用Cs2TlAsI6双卤化物钙钛矿推进太阳能:高效太阳能电池的模拟驱动方法","authors":"Md. Tarekuzzaman, Khandoker Isfaque Ferdous Utsho","doi":"10.1002/aelm.202500312","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) are emerging as promising candidates for next‐generation photovoltaics due to their remarkable optoelectronic properties. In this study, SCAPS‐1D(Solar cell Capacitance Simulator) simulations are employed to evaluate the photovoltaic performance of a lead‐free double perovskite, Cs<jats:sub>2</jats:sub>TlAsI<jats:sub>6</jats:sub>, as an absorber material. A total of 54 device architectures are systematically explored by combining six different electron transport layers (ETLs: Ws<jats:sub>2</jats:sub>, TiO<jats:sub>2</jats:sub>, C<jats:sub>60</jats:sub>, PCBM, IGTO, and LBSO) with nine‐hole transport layers (HTLs: CBTS, Cu<jats:sub>2</jats:sub>O, CuI, CuSCN, P3HT, PEDOT: PSS, PTAA, GaAs, and CdTe), using Ni as the back contact. The ITO/Ws<jats:sub>2</jats:sub>/Cs<jats:sub>2</jats:sub>TlAsI<jats:sub>6</jats:sub>/Cu<jats:sub>2</jats:sub>O/Ni configuration achieves the highest power conversion efficiency (PCE) of 26.92%. Further optimization examines the influence of absorber thickness, ETL hthickness, and defect densities on performance. Detailed analyses include band alignment (VBO/CBO), interface defects, carrier dynamics, quantum efficiency, capacitance profiles, Mott–Schottky behavior, and impedance spectra. Additionally, the effects of series and shunt resistance, temperature, and back contact selection are investigated. Structural stability of Cs<jats:sub>2</jats:sub>TlAsI<jats:sub>6</jats:sub> is confirmed via tolerance factor analysis, including Goldschmidt's and a newly proposed parameter. This simulation‐driven architectural optimization offers new insights into the potential of Cs<jats:sub>2</jats:sub>TlAsI<jats:sub>6</jats:sub>‐based PSCs and provides practical design strategies for high‐efficiency, lead‐free photovoltaic devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"721 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Solar Energy with Cs2TlAsI6 Double Halide Perovskite: A Simulation‐Driven Approach for High‐Efficiency Solar Cell\",\"authors\":\"Md. Tarekuzzaman, Khandoker Isfaque Ferdous Utsho\",\"doi\":\"10.1002/aelm.202500312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite solar cells (PSCs) are emerging as promising candidates for next‐generation photovoltaics due to their remarkable optoelectronic properties. In this study, SCAPS‐1D(Solar cell Capacitance Simulator) simulations are employed to evaluate the photovoltaic performance of a lead‐free double perovskite, Cs<jats:sub>2</jats:sub>TlAsI<jats:sub>6</jats:sub>, as an absorber material. A total of 54 device architectures are systematically explored by combining six different electron transport layers (ETLs: Ws<jats:sub>2</jats:sub>, TiO<jats:sub>2</jats:sub>, C<jats:sub>60</jats:sub>, PCBM, IGTO, and LBSO) with nine‐hole transport layers (HTLs: CBTS, Cu<jats:sub>2</jats:sub>O, CuI, CuSCN, P3HT, PEDOT: PSS, PTAA, GaAs, and CdTe), using Ni as the back contact. The ITO/Ws<jats:sub>2</jats:sub>/Cs<jats:sub>2</jats:sub>TlAsI<jats:sub>6</jats:sub>/Cu<jats:sub>2</jats:sub>O/Ni configuration achieves the highest power conversion efficiency (PCE) of 26.92%. Further optimization examines the influence of absorber thickness, ETL hthickness, and defect densities on performance. Detailed analyses include band alignment (VBO/CBO), interface defects, carrier dynamics, quantum efficiency, capacitance profiles, Mott–Schottky behavior, and impedance spectra. Additionally, the effects of series and shunt resistance, temperature, and back contact selection are investigated. Structural stability of Cs<jats:sub>2</jats:sub>TlAsI<jats:sub>6</jats:sub> is confirmed via tolerance factor analysis, including Goldschmidt's and a newly proposed parameter. This simulation‐driven architectural optimization offers new insights into the potential of Cs<jats:sub>2</jats:sub>TlAsI<jats:sub>6</jats:sub>‐based PSCs and provides practical design strategies for high‐efficiency, lead‐free photovoltaic devices.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"721 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500312\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500312","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿太阳能电池(PSCs)由于其卓越的光电性能而成为下一代光伏电池的有希望的候选者。在本研究中,采用SCAPS‐1D(太阳能电池电容模拟器)模拟来评估无铅双钙钛矿Cs2TlAsI6作为吸收材料的光伏性能。通过将六种不同的电子传输层(ETLs: Ws2, TiO2, C60, PCBM, IGTO和LBSO)与九空穴传输层(HTLs: CBTS, Cu2O, CuI, CuSCN, P3HT, PEDOT: PSS, PTAA, GaAs和CdTe)结合起来,使用Ni作为背触点,系统地探索了总共54种器件架构。ITO/Ws2/Cs2TlAsI6/Cu2O/Ni结构的功率转换效率(PCE)最高,为26.92%。进一步的优化检查了吸收器厚度、ETL厚度和缺陷密度对性能的影响。详细分析包括带对准(VBO/CBO),界面缺陷,载流子动力学,量子效率,电容分布,莫特-肖特基行为和阻抗谱。此外,还研究了串联和并联电阻、温度和背触点选择的影响。通过容差因子分析,包括Goldschmidt's和一个新提出的参数,证实了Cs2TlAsI6的结构稳定性。这种模拟驱动的架构优化为基于Cs2TlAsI6的PSCs的潜力提供了新的见解,并为高效,无铅光伏器件提供了实用的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Solar Energy with Cs2TlAsI6 Double Halide Perovskite: A Simulation‐Driven Approach for High‐Efficiency Solar Cell
Perovskite solar cells (PSCs) are emerging as promising candidates for next‐generation photovoltaics due to their remarkable optoelectronic properties. In this study, SCAPS‐1D(Solar cell Capacitance Simulator) simulations are employed to evaluate the photovoltaic performance of a lead‐free double perovskite, Cs2TlAsI6, as an absorber material. A total of 54 device architectures are systematically explored by combining six different electron transport layers (ETLs: Ws2, TiO2, C60, PCBM, IGTO, and LBSO) with nine‐hole transport layers (HTLs: CBTS, Cu2O, CuI, CuSCN, P3HT, PEDOT: PSS, PTAA, GaAs, and CdTe), using Ni as the back contact. The ITO/Ws2/Cs2TlAsI6/Cu2O/Ni configuration achieves the highest power conversion efficiency (PCE) of 26.92%. Further optimization examines the influence of absorber thickness, ETL hthickness, and defect densities on performance. Detailed analyses include band alignment (VBO/CBO), interface defects, carrier dynamics, quantum efficiency, capacitance profiles, Mott–Schottky behavior, and impedance spectra. Additionally, the effects of series and shunt resistance, temperature, and back contact selection are investigated. Structural stability of Cs2TlAsI6 is confirmed via tolerance factor analysis, including Goldschmidt's and a newly proposed parameter. This simulation‐driven architectural optimization offers new insights into the potential of Cs2TlAsI6‐based PSCs and provides practical design strategies for high‐efficiency, lead‐free photovoltaic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信