{"title":"Photoluminescence and Room‐Temperature Ferromagnetism in CuO:Ho Dilute Magnetic Semiconductor Materials","authors":"Xun Wang, Yahui Zhai, Zichu Zhang, Zhen Sun, Mingyan Chuai","doi":"10.1002/aelm.202400857","DOIUrl":null,"url":null,"abstract":"A chemical vapor‐liquid phase deposition and subsequent auxiliary heating method is developed to synthesize crystal CuO and CuO:Ho terrace structures. CuO terrace structures display weak ferromagnetic behavior owing to their unique crystal structure. The ferromagnetism of CuO:Ho terrace structures is significantly enhanced compared to the crystal CuO, and the values of the saturation magnetization present a parabolic trend with the increase of Ho ions doping concentrations. The magnetism of the crystal CuO:Ho terrace structures is mainly derived from the magnetic moment provided by the synergistic effect of Ho ions doping and oxygen vacancies. The saturation magnetizations and the coercivity of CuO:Ho (x = 0.88%) sample are 0.0595 emu g<jats:sup>−1</jats:sup> and 90.5 Oe, respectively. The first‐principles calculations have been used to investigate the origin of ferromagnetism of the CuO:Ho terrace structures. The result of spin polarization density of states and spatial distribution of the spin density show that the origin of the ferromagnetism for CuO:Ho crystal is mainly attributed to the exchange interactions among the O 1s, Cu 2p, and Ho 4f orbits. The terrace structure of CuO:Ho samples offers a defined interface for controlling spin‐polarized states, making it suitable for exploring new spintronic phenomena.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"6 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400857","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A chemical vapor‐liquid phase deposition and subsequent auxiliary heating method is developed to synthesize crystal CuO and CuO:Ho terrace structures. CuO terrace structures display weak ferromagnetic behavior owing to their unique crystal structure. The ferromagnetism of CuO:Ho terrace structures is significantly enhanced compared to the crystal CuO, and the values of the saturation magnetization present a parabolic trend with the increase of Ho ions doping concentrations. The magnetism of the crystal CuO:Ho terrace structures is mainly derived from the magnetic moment provided by the synergistic effect of Ho ions doping and oxygen vacancies. The saturation magnetizations and the coercivity of CuO:Ho (x = 0.88%) sample are 0.0595 emu g−1 and 90.5 Oe, respectively. The first‐principles calculations have been used to investigate the origin of ferromagnetism of the CuO:Ho terrace structures. The result of spin polarization density of states and spatial distribution of the spin density show that the origin of the ferromagnetism for CuO:Ho crystal is mainly attributed to the exchange interactions among the O 1s, Cu 2p, and Ho 4f orbits. The terrace structure of CuO:Ho samples offers a defined interface for controlling spin‐polarized states, making it suitable for exploring new spintronic phenomena.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.