Jasmine, Divyeksha H. Baraiya, Kavya T.T., Aparna Mandal, Shreya Chakraborty, Neha Sathish, Cynthia Marian Rebecca Francis, Diya Binoy Joseph
{"title":"Epithelial and mesenchymal compartments of the developing bladder and urethra display spatially distinct gene expression patterns","authors":"Jasmine, Divyeksha H. Baraiya, Kavya T.T., Aparna Mandal, Shreya Chakraborty, Neha Sathish, Cynthia Marian Rebecca Francis, Diya Binoy Joseph","doi":"10.1016/j.ydbio.2025.01.005","DOIUrl":"10.1016/j.ydbio.2025.01.005","url":null,"abstract":"<div><div>The lower urinary tract is comprised of the bladder and urethra and develops from the cloaca, a transient endoderm-derived structure formed from the caudal hindgut. After cloacal septation to form the urogenital sinus and anorectal tract, the bladder gradually develops from the anterior portion of the urogenital sinus while the urethra elongates distally into the genital tubercle. The bladder is a target for regenerative and reconstructive therapies but engineering an impermeable bladder epithelial lining has proven challenging. Urethral epithelial function, including its role as an active immune barrier, is poorly studied and neglected in regenerative therapy. A deeper understanding of epithelial patterning of the urogenital sinus by the surrounding mesenchyme, also accounting for sex-specific differences, can inform regenerative therapies. In this study, we identified spatially distinct genes in the epithelial and mesenchymal compartments of the developing mouse bladder and urethra that could be potential drivers of patterning in the lower urinary tract. Our data revealed spatially restricted domains of transcription factor expression in the epithelium that corresponded with bladder or urethra-specific differentiation. Additionally, we identified the genes <em>Wnt2</em>, <em>Klf4</em> and <em>Pitx2</em> that localize to the mesenchyme of the developing bladder and could be potential drivers of bladder differentiation. Our data revealed an increase in the expression of several chemokine genes including <em>Cx3cl1</em> and <em>Cxcl14</em> in the developing urethral epithelium that correlated with an increase in epithelial-associated macrophages in the urethra. A survey of sex-specific differences in epithelial and mesenchymal compartments revealed several differentially expressed genes between the male and female urethra but few sex-specific differences in bladder. By comparing spatially distinct gene expression in the developing lower urinary tract, our study provides insights into the divergent differentiation trajectories of the fetal bladder and urethra that establish their adult functions.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 155-170"},"PeriodicalIF":2.5,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“Pattern regulation in epimorphic fields”, aka the polar coordinate model","authors":"Jonathan M.W. Slack","doi":"10.1016/j.ydbio.2025.01.006","DOIUrl":"10.1016/j.ydbio.2025.01.006","url":null,"abstract":"<div><div>The Polar Coordinate Model (PCM) was a model, published in 1976, to account for the properties of distal regeneration in the appendages of insects and vertebrates. It had considerable impact at the time and has continued to be cited ever since. This article describes the work that led up to the model, the genesis of the model itself, its strengths and weaknesses, and its long term impact.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 82-90"},"PeriodicalIF":2.5,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation of a transgenic chicken line with reporters for limb bud mesenchyme and apical ectodermal ridge cells","authors":"Yuji Atsuta , Yi-Chen Chen , Yuna Hattori , Tatsuya Takemoto , Daisuke Saito","doi":"10.1016/j.ydbio.2025.01.003","DOIUrl":"10.1016/j.ydbio.2025.01.003","url":null,"abstract":"<div><div>Cell type-specific reporter transgenic chicken lines are invaluable tools in developmental biology, allowing the visualization of dynamics and differentiation states of target cell types in living embryos. Here, we report the establishment of a new transgenic chicken line in which limb mesenchyme and apical ectodermal ridge (AER) cells are labeled with different fluorescent proteins in the embryos. The processes for generating the reporter line involved using tissue-specific promoters, the Tol2 transposon-mediated genomic integration, and clonal culture system of primordial germ cells. Employing the transgenic chickens would facilitate the detailed characterization of limb mesenchyme and AER cells. Thus, this reporter chicken line will be a powerful tool for advancing the study of vertebrate limb development.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 53-61"},"PeriodicalIF":2.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Ali, James W. Kutlowski, Jorden N. Holland, Bruce B. Riley
{"title":"Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear","authors":"Maria Ali, James W. Kutlowski, Jorden N. Holland, Bruce B. Riley","doi":"10.1016/j.ydbio.2025.01.001","DOIUrl":"10.1016/j.ydbio.2025.01.001","url":null,"abstract":"<div><div>During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors. Targeted knockout of <em>foxm1</em> causes no overt defects in development. Homozygous mutants are viable and exhibit no obvious defects except male sterility. However, the mutant allele acts dominantly to reduce accumulation of SAG neurons, and maternal loss-of-function slightly enhances this deficiency. Neural progenitors are specified normally but, unexpectedly, persist in an early state of rapid proliferation and are delayed in differentiation. Progenitors eventually shift to a slower rate of proliferation similar to wild-type and differentiate to produce a normal number of SAG neurons, although the arrangement of neurons remains variably disordered. Mutant progenitors remain responsive to Fgf and Notch, as blocking these pathways partially alleviates the delay in differentiation. However, the ability of elevated Wnt/beta-catenin to block neural specification is impaired in <em>foxm1</em> mutants. Modulating Wnt at later stages has no effect on progenitors in mutant or wild-type embryos. Our findings document an unusual role for <em>foxm1</em> in promoting differentiation of SAG progenitors from an early, rapidly dividing phase to a more mature slower phase prior to differentiation.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 21-30"},"PeriodicalIF":2.5,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tunicate-specific protein Epi-1 is essential for conferring hydrophilicity to the larval tunic in the ascidian Ciona","authors":"Kazu Kuroiwa , Kaoru Mita-Yoshida , Mayuko Hamada , Akiko Hozumi , Atsuo S. Nishino , Yasunori Sasakura","doi":"10.1016/j.ydbio.2025.01.002","DOIUrl":"10.1016/j.ydbio.2025.01.002","url":null,"abstract":"<div><div>Animals must avoid adhesion to objects in the environment to maintain their mobility and independence. The marine invertebrate chordate ascidians are characterized by an acellular matrix tunic enveloping their entire body for protection and swimming. The tunic of ascidian larvae consists of a surface cuticle layer and inner matrix layer. Hydrophilic substances coat the cuticle; this modification is thought to be for preventing adhesion. However, the molecule responsible for regulating this modification has not been clarified. We here found that the tunicate-specific protein Epi-1 is responsible for preventing adhesiveness of the tunic in the ascidian <em>Ciona intestinalis</em> Type A. <em>Ciona</em> mutants with homozygous knockouts of <em>Epi-1</em> exhibited adhesion to plastic plates and to other individuals. The cuticle of the <em>Epi-1</em> mutants was fragile, and it lost the glycosaminoglycans supplied by test cells, the accessory cells that normally attach to the tunic surface. Although it has an apparent signal peptide for membrane trafficking, we showed that the Epi-1 protein is localized to the cytosol of the epidermal cells. Our study suggests that the emergence of the tunicate-specific protein Epi-1 made the tunic less adhesive, providing a selective advantage for the last common tunicate ancestor.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 41-52"},"PeriodicalIF":2.5,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142962135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Engelhardt , Juliette R. Petersen , Cara Martyr , Hannah Kuhn-Gale , Lee A. Niswander
{"title":"Moderate levels of folic acid benefit outcomes for cilia based neural tube defects","authors":"David Engelhardt , Juliette R. Petersen , Cara Martyr , Hannah Kuhn-Gale , Lee A. Niswander","doi":"10.1016/j.ydbio.2024.12.019","DOIUrl":"10.1016/j.ydbio.2024.12.019","url":null,"abstract":"<div><div>Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models. We demonstrate that NTD rates in mouse models harboring mutations in cilia genes depend on FA dosage. Cilia mutant mouse models demonstrate reductions in NTD rates when exposed to moderate levels of FA that are not observed at higher fortified levels of FA. This trend continues with a moderate level of FA being beneficial for primary and motile cilia formation. We present a mechanism through which fortified FA levels reduce basal levels of reactive oxygen species (ROS) which in turn reduces ROS-sensitive GTPase activity required for ciliogenesis. Our data indicates that genes involved in cilia formation and function represent a FA sensitive category of mutations and a possible avenue for further reducing NTD and ciliopathy incidences.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 62-74"},"PeriodicalIF":2.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ancient emergence of neuronal heterogeneity in the enteric nervous system of jawless vertebrates","authors":"Brittany M. Edens, Jason Lin, Marianne E. Bronner","doi":"10.1016/j.ydbio.2024.12.020","DOIUrl":"10.1016/j.ydbio.2024.12.020","url":null,"abstract":"<div><div>While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS<sup>+</sup> and VIP<sup>+</sup> neurons, consistent with motor neuron identity. Moreover, the presence of Calbindin<sup>+</sup> neurons was suggestive of sensory IPANs. Quantification of neural numbers by subtype across the length of the intestine revealed significant, albeit subtle differences in distribution of neuronal markers at different axial levels, suggesting that the complex organizational features of the ENS may have emerged much earlier in the vertebrate lineage than previously appreciated.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 117-124"},"PeriodicalIF":2.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Back Cover - Graphical abstract TOC/TOC in double column/Cover image legend if applicable, Bar code, Abstracting and Indexing information","authors":"","doi":"10.1016/S0012-1606(24)00272-0","DOIUrl":"10.1016/S0012-1606(24)00272-0","url":null,"abstract":"","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Page OBC"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143151803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gary Teeters , Christina E. Cucolo , Sagar N. Kasar , Melanie I. Worley , Sarah E. Siegrist
{"title":"Spatiotemporal control of cell ablation using Ronidazole with Nitroreductase in Drosophila","authors":"Gary Teeters , Christina E. Cucolo , Sagar N. Kasar , Melanie I. Worley , Sarah E. Siegrist","doi":"10.1016/j.ydbio.2024.12.017","DOIUrl":"10.1016/j.ydbio.2024.12.017","url":null,"abstract":"<div><div>The ability to induce cell death in a controlled stereotypic manner has led to the discovery of evolutionary conserved molecules and signaling pathways necessary for tissue growth, repair, and regeneration. Here we report the development of a new method to genetically induce cell death in a controlled stereotypic manner in <em>Drosophila</em>. This method has advantages over other current methods and relies on expression of the <em>E. coli</em> enzyme Nitroreductase (NTR) with exogenous application of the nitroimidazole prodrug, Ronidazole. NTR expression is controlled spatially using the GAL4/UAS system while temporal control of cell death is achieved through timed feeding of Ronidazole supplied in the diet. In cells expressing NTR, Ronidazole is converted to a toxic substance inducing DNA damage and cell death. Caspase cell death is achieved in a range of NTR-expressing cell types with Ronidazole feeding, including epithelial, neurons, and glia. Removing Ronidazole from the diet restores cell death to normal unperturbed levels. Unlike other genetic ablation methods, temporal control is achieved through feeding not temperature, circumventing developmental complications associated with temperature changes. Ronidazole-NTR also requires only two transgenes, a GAL4 driver and <em>UAS-NTR</em>, which is generated as a GFP-NTR fusion allowing for easy setup of large-scale screening of <em>UAS-RNAi</em> lines. Altogether, Ronidazole-NTR provides a new streamlined method for inducing cell death in <em>Drosophila</em> with temperature-independent ON/OFF control.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 31-40"},"PeriodicalIF":2.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to “Research that Transformed Developmental Biology”","authors":"Steven L. Klein Ph.D.","doi":"10.1016/j.ydbio.2024.12.011","DOIUrl":"10.1016/j.ydbio.2024.12.011","url":null,"abstract":"","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"519 ","pages":"Page 150"},"PeriodicalIF":2.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}