Critical Reviews in Biotechnology最新文献

筛选
英文 中文
D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications. 用于低热量 D-纤维素合成的 D-allulose 3-epimerase:微生物生产、表征和应用。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-07-07 DOI: 10.1080/07388551.2024.2368517
Xiaofang Xie, Caiming Li, Xiaofeng Ban, Hongshun Yang, Zhaofeng Li
{"title":"D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications.","authors":"Xiaofang Xie, Caiming Li, Xiaofeng Ban, Hongshun Yang, Zhaofeng Li","doi":"10.1080/07388551.2024.2368517","DOIUrl":"https://doi.org/10.1080/07388551.2024.2368517","url":null,"abstract":"<p><p>D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-20"},"PeriodicalIF":8.1,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental impact of microplastics and potential health hazards. 微塑料对环境的影响和潜在的健康危害。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-24 DOI: 10.1080/07388551.2024.2344572
K B Megha, D Anvitha, S Parvathi, A Neeraj, J Sonia, P V Mohanan
{"title":"Environmental impact of microplastics and potential health hazards.","authors":"K B Megha, D Anvitha, S Parvathi, A Neeraj, J Sonia, P V Mohanan","doi":"10.1080/07388551.2024.2344572","DOIUrl":"https://doi.org/10.1080/07388551.2024.2344572","url":null,"abstract":"<p><p>Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-31"},"PeriodicalIF":8.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Food contamination from packaging material with special focus on the Bisphenol-A. 包装材料对食品的污染,特别关注双酚 A。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-05 DOI: 10.1080/07388551.2024.2344571
Aparna Agarwal, Shivika Gandhi, Abhishek Dutt Tripathi, Abhishek Gupta, Marco Iammarino, Jaisal Kaur Sidhu
{"title":"Food contamination from packaging material with special focus on the Bisphenol-A.","authors":"Aparna Agarwal, Shivika Gandhi, Abhishek Dutt Tripathi, Abhishek Gupta, Marco Iammarino, Jaisal Kaur Sidhu","doi":"10.1080/07388551.2024.2344571","DOIUrl":"https://doi.org/10.1080/07388551.2024.2344571","url":null,"abstract":"<p><p>Additives, such as bisphenol A (BPA) that are added to packaging material to enhance functionality may migrate into food products creating a concern for food safety. BPA has been linked to various chronic diseases, such as: diabetes, obesity, prostate cancer, impaired thyroid function, and several other metabolic disorders. To safeguard consumers, BPA migration limits have been defined by regulatory bodies. However, it is important to address the underlying factors and mechanisms so that they can be optimized in order to minimize BPA migration. In this review, we determine the relative importance of the factors, i.e. temperature, contact time, pH, food composition, storage time and temperature, package type, cleaning, and aging, and packaging damage that promote BPA migration in foods. Packaging material seems to be the key source of BPA and the temperature (applied during food production, storage, can sterilization and cleaning processes) was the critical driver influencing BPA migration.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-11"},"PeriodicalIF":9.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects. 植物 YABBY 转录因子:基因表达、生物功能和前景综述。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-03 DOI: 10.1080/07388551.2024.2344576
Kaiyuan Han, Meng Lai, Tianyun Zhao, Xiong Yang, Xinmin An, Zhong Chen
{"title":"Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects.","authors":"Kaiyuan Han, Meng Lai, Tianyun Zhao, Xiong Yang, Xinmin An, Zhong Chen","doi":"10.1080/07388551.2024.2344576","DOIUrl":"https://doi.org/10.1080/07388551.2024.2344576","url":null,"abstract":"<p><p>Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C<sub>2</sub>C<sub>2</sub> zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-22"},"PeriodicalIF":9.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oligonucleotide probes for imaging and diagnosis of bacterial infections. 用于成像和诊断细菌感染的寡核苷酸探针。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-03 DOI: 10.1080/07388551.2024.2344574
Luís Moreira, Nuno Miguel Guimarães, Rita Sobral Santos, Joana Angélica Loureiro, Maria do Carmo Pereira, Nuno Filipe Azevedo
{"title":"Oligonucleotide probes for imaging and diagnosis of bacterial infections.","authors":"Luís Moreira, Nuno Miguel Guimarães, Rita Sobral Santos, Joana Angélica Loureiro, Maria do Carmo Pereira, Nuno Filipe Azevedo","doi":"10.1080/07388551.2024.2344574","DOIUrl":"https://doi.org/10.1080/07388551.2024.2344574","url":null,"abstract":"<p><p>The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for <i>in vivo</i> imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through <i>in vivo</i> hybridization.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-20"},"PeriodicalIF":9.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents. 放射性核素生物地球化学:从生物修复到放射性废水的处理。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-05-31 DOI: 10.1080/07388551.2023.2194505
Adam J Williamson, Marie Binet, Claire Sergeant
{"title":"Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents.","authors":"Adam J Williamson, Marie Binet, Claire Sergeant","doi":"10.1080/07388551.2023.2194505","DOIUrl":"10.1080/07388551.2023.2194505","url":null,"abstract":"<p><p>Civilian and military nuclear programs of several nations over more than 70 years have led to significant quantities of heterogenous solid, organic, and aqueous radioactive wastes bearing actinides, fission products, and activation products. While many physicochemical treatments have been developed to remediate, decontaminate and reduce waste volumes, they can involve high costs (energy input, expensive sorbants, ion exchange resins, chemical reducing/precipitation agents) or can lead to further secondary waste forms. Microorganisms can directly influence radionuclide solubility, <i>via</i> sorption, accumulation, precipitation, redox, and volatilization pathways, thus offering a more sustainable approach to remediation or effluent treatments. Much work to date has focused on fundamentals or laboratory-scale remediation trials, but there is a paucity of information toward field-scale bioremediation and, to a lesser extent, toward biological liquid effluent treatments. From the few biostimulation studies that have been conducted at legacy weapon production/test sites and uranium mining and milling sites, some marked success <i>via</i> bioreduction and biomineralisation has been observed. However, rebounding of radionuclide mobility from (a)biotic scale-up factors are often encountered. Radionuclide, heavy metal, co-contaminant, and/or matrix effects provide more challenging conditions than traditional industrial wastewater systems, thus innovative solutions <i>via</i> indirect interactions with stable element biogeochemical cycles, natural or engineered cultures or communities of metal and irradiation tolerant strains and reactor design inspirations from existing metal wastewater technologies, are required. This review encompasses the current state of the art in radionuclide biogeochemistry fundamentals and bioremediation and establishes links toward transitioning these concepts toward future radioactive effluent treatments.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"698-716"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9924771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial genome reduction for optimal chassis of synthetic biology: a review. 减少细菌基因组以优化合成生物学底盘:综述。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-06-28 DOI: 10.1080/07388551.2023.2208285
Shuai Ma, Tianyuan Su, Xuemei Lu, Qingsheng Qi
{"title":"Bacterial genome reduction for optimal chassis of synthetic biology: a review.","authors":"Shuai Ma, Tianyuan Su, Xuemei Lu, Qingsheng Qi","doi":"10.1080/07388551.2023.2208285","DOIUrl":"10.1080/07388551.2023.2208285","url":null,"abstract":"<p><p>Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"660-673"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. omics 时代的植物病原体生物防治--特别关注内生杆菌。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-04-13 DOI: 10.1080/07388551.2023.2183379
Ayesha Ahmed, Pengfei He, Yueqiu He, Brajesh K Singh, Yixin Wu, Shahzad Munir, Pengbo He
{"title":"Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli.","authors":"Ayesha Ahmed, Pengfei He, Yueqiu He, Brajesh K Singh, Yixin Wu, Shahzad Munir, Pengbo He","doi":"10.1080/07388551.2023.2183379","DOIUrl":"10.1080/07388551.2023.2183379","url":null,"abstract":"<p><p>Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"562-580"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9294460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. 作为脂肪酸、类胡萝卜素和固醇的重要来源的蓟马:生物活性化合物的生物合成和现代生物技术。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-05-09 DOI: 10.1080/07388551.2023.2196373
Yingjie Song, Xuewei Yang, Shuangfei Li, Yanqing Luo, Jo-Shu Chang, Zhangli Hu
{"title":"Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology.","authors":"Yingjie Song, Xuewei Yang, Shuangfei Li, Yanqing Luo, Jo-Shu Chang, Zhangli Hu","doi":"10.1080/07388551.2023.2196373","DOIUrl":"10.1080/07388551.2023.2196373","url":null,"abstract":"<p><p>Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"618-640"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9434502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. D- 氨基酸生物合成的最新战略和研究进展。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-05-09 DOI: 10.1080/07388551.2023.2193861
Fenghua Wang, Hongbin Qi, Huimin Li, Xuanzhen Ma, Xin Gao, Chao Li, Fuping Lu, Shuhong Mao, Hui-Min Qin
{"title":"State-of-the-art strategies and research advances for the biosynthesis of D-amino acids.","authors":"Fenghua Wang, Hongbin Qi, Huimin Li, Xuanzhen Ma, Xin Gao, Chao Li, Fuping Lu, Shuhong Mao, Hui-Min Qin","doi":"10.1080/07388551.2023.2193861","DOIUrl":"10.1080/07388551.2023.2193861","url":null,"abstract":"<p><p>D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"495-513"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9438520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信