{"title":"Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology.","authors":"Yingjie Song, Xuewei Yang, Shuangfei Li, Yanqing Luo, Jo-Shu Chang, Zhangli Hu","doi":"10.1080/07388551.2023.2196373","DOIUrl":"10.1080/07388551.2023.2196373","url":null,"abstract":"<p><p>Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9434502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"State-of-the-art strategies and research advances for the biosynthesis of D-amino acids.","authors":"Fenghua Wang, Hongbin Qi, Huimin Li, Xuanzhen Ma, Xin Gao, Chao Li, Fuping Lu, Shuhong Mao, Hui-Min Qin","doi":"10.1080/07388551.2023.2193861","DOIUrl":"10.1080/07388551.2023.2193861","url":null,"abstract":"<p><p>D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9438520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sadaf-Ilyas Kayani, Saeed-Ur -Rahman, Qian Shen, Yi Cui, Wei Liu, Xinjuan Hu, Feifei Zhu, Shuhao Huo
{"title":"Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in <i>Haematococcus pluvialis</i>.","authors":"Sadaf-Ilyas Kayani, Saeed-Ur -Rahman, Qian Shen, Yi Cui, Wei Liu, Xinjuan Hu, Feifei Zhu, Shuhao Huo","doi":"10.1080/07388551.2023.2208284","DOIUrl":"10.1080/07388551.2023.2208284","url":null,"abstract":"<p><p>Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. <i>Haematococcus pluvialis</i> is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in <i>H. pluvialis.</i> However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in <i>H. pluvialis</i> genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in <i>H. pluvialis</i>.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui
{"title":"Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts.","authors":"Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui","doi":"10.1080/07388551.2023.2189548","DOIUrl":"10.1080/07388551.2023.2189548","url":null,"abstract":"<p><p>Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9619376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pradeep Kumar, HyunA Park, Yong Yuk, Hayan Kim, Jihwan Jang, Raviteja Pagolu, SeoA Park, Chanseo Yeo, Kwon-Young Choi
{"title":"Developed and emerging 1,4-butanediol commercial production strategies: forecasting the current status and future possibility.","authors":"Pradeep Kumar, HyunA Park, Yong Yuk, Hayan Kim, Jihwan Jang, Raviteja Pagolu, SeoA Park, Chanseo Yeo, Kwon-Young Choi","doi":"10.1080/07388551.2023.2176740","DOIUrl":"10.1080/07388551.2023.2176740","url":null,"abstract":"<p><p>1,4-Butanediol (1,4-BDO) is a valuable industrial chemical that is primarily produced via several energy-intensive petrochemical processes based on fossil-based raw materials, leading to issues related to: non-renewability, environmental contamination, and high production costs. 1,4-BDO is used in many chemical reactions to develop a variety of useful, valuable products, such as: polyurethane, Spandex intermediates, and polyvinyl pyrrolidone (PVP), a water-soluble polymer with numerous personal care and pharmaceutical uses. In recent years, to satisfy the growing need for 1,4-BDO, there has been a major shift in focus to sustainable bioproduction via microorganisms using: recombinant strains, metabolic engineering, synthetic biology, enzyme engineering, bioinformatics, and artificial intelligence-guided algorithms. This article discusses the current status of the development of: various chemical and biological production techniques for 1,4-BDO, advances in biological pathways for 1,4-BDO biosynthesis, prospects for future production strategies, and the difficulties associated with environmentally friendly and bio-based commercial production strategies.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9591936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrospun wound dressings with antibacterial function: a critical review of plant extract and essential oil incorporation.","authors":"Cláudia Mouro, Isabel C Gouveia","doi":"10.1080/07388551.2023.2193859","DOIUrl":"10.1080/07388551.2023.2193859","url":null,"abstract":"<p><p>Among the many different types of wound dressings, nanofiber-based materials produced through electrospinning are claimed to be ideal because of their advantageous intrinsic properties and the feasibility of employing several strategies to load bioactive compounds into their structure. Bioactive compounds with antimicrobial properties have been incorporated into different wound dressings to promote healing as well as prevent and treat bacterial infections. Among these, natural products, such as medicinal plant extracts and essential oils (EOs), have proven particularly attractive thanks to their nontoxic nature, minor side effects, desirable bioactive properties, and favorable effects on the healing process. To this end, the present review provides an exhaustive and up-to-date revision of the most prominent medicinal plant extracts and EOs with antimicrobial properties that have been incorporated into nanofiber-based wound dressings. The most common methods used for incorporating bioactive compounds into electrospun nanofibers include: pre-electrospinning (blend, encapsulation, coaxial, and emulsion electrospinning), post-electrospinning (physical adsorption, chemical immobilization, and layer-by-layer assembly), and nanoparticle loading. Furthermore, a general overview of the benefits of EOs and medicinal plant extracts is presented, describing their intrinsic properties and biotechniques for their incorporation into wound dressings. Finally, the current challenges and safety issues that need to be adequately clarified and addressed are discussed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dissecting dietary alkylresorcinols: a compile of their distribution, biosynthesis, extraction and functional properties.","authors":"Rehan M El-Shabasy, Mohamed A Farag","doi":"10.1080/07388551.2023.2193860","DOIUrl":"10.1080/07388551.2023.2193860","url":null,"abstract":"<p><p>Alkylresorcinols (ARs) are natural bioactive ingredients produced by: bacteria, fungi, sponges, and higher plants, possessing a lipophilic polyphenol structure with a myriad of biological properties. Focusing on the importance of ARs, several analogs can be extracted from different natural resources. Interestingly, the composition of ARs is usually reflective of their source, with structural differences to exist among ARs isolated from different natural sources. The identified compounds from marine are distinguished by sulfur atom and disulfide bond, while the alkyl chain of bacterial homologs are recognized for their saturated fatty acid chains. ARs occurrence in fungi is still poorly documented however most of the isolated fungal molecules are characterized by a sugar unit attached to their alkylated side chains. The biosynthetic pathway of ARs is postulated <i>via</i> a type III polyketide synthase in which the fatty-acyl chain is elongated and cyclized to generate ARs. The structure-activity relationship (SAR) has gained an increasing interest to mediate for ARs biological activities as discussed herein for the first time from their different resources. ARs extraction procedures showed much progress compared to classical methods compiling organic solvents with supercritical extraction appearing as a potential technique for producing highly purified food-grade of AR homologs. The current review also presents on the rapid qualitative and quantitative determination of ARs to increase accessibility for screening cereals as potential sources of these bioactives.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanobiosensors and their role in detection of adulterants and contaminants in food products.","authors":"Gurlovleen Kaur, Ranjeeta Bhari, Kuldeep Kumar","doi":"10.1080/07388551.2023.2175196","DOIUrl":"10.1080/07388551.2023.2175196","url":null,"abstract":"<p><p>Nanotechnology is a multifaceted technical and scientific field undergoing a fast expansion. Nanoparticles, quantum dots, nanotubes, nanorods, nanowires, nanochips and many more are being increasingly used for fabrication of nanosensors and nanobiosensors to increase the sensitivity and selectivity of reactions. Food safety is an extremely important concern in food industries since it is directly associated with effect of food on human health. Here in our review, we have not only described the newest information regarding methods and use of nanomaterials for construction of nanosensors but also their detection range, limit of detection (LOD) and applications for food safety. Precise nanosensors having improved sensitivity and low limit of detection were discussed in brief. Review is primarily focused on nanosensors employed for detection of adulterants and contaminants in food products such as meat products, milk, fruit juices and water samples.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10785089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel L Arruda, Maria Teresa F R Raymundo, Mónica M Cruz-Santos, Vinícius P Shibukawa, Fanny M Jofre, Carina A Prado, Silvio S da Silva, Solange I Mussatto, Júlio C Santos
{"title":"Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments.","authors":"Gabriel L Arruda, Maria Teresa F R Raymundo, Mónica M Cruz-Santos, Vinícius P Shibukawa, Fanny M Jofre, Carina A Prado, Silvio S da Silva, Solange I Mussatto, Júlio C Santos","doi":"10.1080/07388551.2024.2349581","DOIUrl":"https://doi.org/10.1080/07388551.2024.2349581","url":null,"abstract":"<p><p>Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, β-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthetic biology for the food industry: advances and challenges.","authors":"Ruipeng Chen, Shuyue Ren, Shuang Li, Huanying Zhou, Xuexia Jia, Dianpeng Han, Zhixian Gao","doi":"10.1080/07388551.2024.2340530","DOIUrl":"https://doi.org/10.1080/07388551.2024.2340530","url":null,"abstract":"<p><p>As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}