{"title":"<i>Escherichia coli</i> and <i>Pichia pastoris</i>: microbial cell-factory platform for -full-length IgG production.","authors":"Shyam Krishna, Sang Taek Jung, Eun Yeol Lee","doi":"10.1080/07388551.2024.2342969","DOIUrl":"https://doi.org/10.1080/07388551.2024.2342969","url":null,"abstract":"<p><p>Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, <i>Escherichia coli</i> and <i>Pichia pastoris</i> are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in <i>E. coli</i>, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, <i>Pichia</i>, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited <i>E</i>. <i>coli</i> and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of <i>E. coli</i> and <i>P. pastoris</i> as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights <i>E. coli</i> and <i>P. pastoris</i> as potential hosts for antibody production.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-23"},"PeriodicalIF":9.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pathogenesis related-1 proteins in plant defense: regulation and functional diversity.","authors":"Talha Javed, Wenzhi Wang, Benpeng Yang, Linbo Shen, Tingting Sun, San-Ji Gao, Shuzhen Zhang","doi":"10.1080/07388551.2024.2344583","DOIUrl":"10.1080/07388551.2024.2344583","url":null,"abstract":"<p><p>Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-9"},"PeriodicalIF":9.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Ping Huang, Jie-Yan Shi, Xin-Tao Luo, Si-Chen Luo, Peter C K Cheung, Harold Corke, Qiong-Qiong Yang, Bo-Bo Zhang
{"title":"How do probiotics alleviate constipation? A narrative review of mechanisms.","authors":"Yu-Ping Huang, Jie-Yan Shi, Xin-Tao Luo, Si-Chen Luo, Peter C K Cheung, Harold Corke, Qiong-Qiong Yang, Bo-Bo Zhang","doi":"10.1080/07388551.2024.2336531","DOIUrl":"https://doi.org/10.1080/07388551.2024.2336531","url":null,"abstract":"<p><p>Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":9.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimicrobials from endophytes as novel therapeutics to counter drug-resistant pathogens.","authors":"Pragya Tiwari, Shreya Thakkar, Laurent Dufossé","doi":"10.1080/07388551.2024.2342979","DOIUrl":"https://doi.org/10.1080/07388551.2024.2342979","url":null,"abstract":"<p><p>The rapid increase in antimicrobial resistance (AMR) projects a \"global emergency\" and necessitates a need to discover alternative resources for combating drug-resistant pathogens or \"superbugs.\" One of the key themes in \"One Health Concept\" is based on the fact that the interconnected network of humans, the environment, and animal habitats majorly contribute to the rapid selection and spread of AMR. Moreover, the injudicious and overuse of antibiotics in healthcare, the environment, and associated disciplines, further aggravates the concern. The prevalence and persistence of AMR contribute to the global economic burden and are constantly witnessing an upsurge due to fewer therapeutic options, rising mortality statistics, and expensive healthcare. The present decade has witnessed the extensive exploration and utilization of bio-based resources in harnessing antibiotics of potential efficacies. The discovery and characterization of diverse chemical entities from endophytes as potent antimicrobials define an important yet less-explored area in natural product-mediated drug discovery. Endophytes-produced antimicrobials show potent efficacies in targeting microbial pathogens and synthetic biology (SB) mediated engineering of endophytes for yield enhancement, forms a prospective area of research. In keeping with the urgent requirements for new/novel antibiotics and growing concerns about pathogenic microbes and AMR, this paper comprehensively reviews emerging trends, prospects, and challenges of antimicrobials from endophytes and their effective production <i>via</i> SB. This literature review would serve as the platform for further exploration of novel bioactive entities from biological organisms as \"novel therapeutics\" to address AMR.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-27"},"PeriodicalIF":9.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying-Ying Chen, Jia-Cong Huang, Cai-Yun Wu, Shi-Qin Yu, Yue-Tong Wang, Chao Ye, Tian-Qiong Shi, He Huang
{"title":"A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria.","authors":"Ying-Ying Chen, Jia-Cong Huang, Cai-Yun Wu, Shi-Qin Yu, Yue-Tong Wang, Chao Ye, Tian-Qiong Shi, He Huang","doi":"10.1080/07388551.2024.2336532","DOIUrl":"https://doi.org/10.1080/07388551.2024.2336532","url":null,"abstract":"<p><p>5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-16"},"PeriodicalIF":9.0,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chromatin modifications and memory in regulation of stress-related polyphenols: finding new ways to control flavonoid biosynthesis","authors":"Victor P. Bulgakov","doi":"10.1080/07388551.2024.2336529","DOIUrl":"https://doi.org/10.1080/07388551.2024.2336529","url":null,"abstract":"The influence of epigenetic factors on plant defense responses and the balance between growth and defense is becoming a central area in plant biology. It is believed that the biosynthesis of second...","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":"49 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Young Jin Ko, Myeong-Eun Lee, Byeong-Hyeon Cho, Minhye Kim, Jeong Eun Hyeon, Joo Hee Han, Sung Ok Han
{"title":"Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives.","authors":"Young Jin Ko, Myeong-Eun Lee, Byeong-Hyeon Cho, Minhye Kim, Jeong Eun Hyeon, Joo Hee Han, Sung Ok Han","doi":"10.1080/07388551.2023.2168512","DOIUrl":"10.1080/07388551.2023.2168512","url":null,"abstract":"<p><p>Porphyrins, phycobilins, and their proteins have abundant π-electrons and strongly absorb visible light, some of which bind a metal ion in the center. Because of the structural and optical properties, they not only play critical roles as an essential component in natural systems but also have attracted much attention as a high value specialty chemical in various fields, including renewable energy, cosmetics, medicines, and foods. However, their commercial application seems to be still limited because the market price of porphyrins and phycobilins is generally expensive to apply them easily. Furthermore, their petroleum-based chemical synthesis is energy-intensive and emits a pollutant. Recently, to replace petroleum-based production, many studies on the bioproduction of metalloporphyrins, including Zn-porphyrin, Co-porphyrin, and heme, porphyrin derivatives including chlorophyll, biliverdin, and phycobilins, and their proteins including hemoproteins, phycobiliproteins, and phytochromes from renewable carbon sources using microbial cell factories have been reported. This review outlines recent advances in the bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories developed by various microbial biotechnology techniques, provides well-organized information on metabolic regulations of the porphyrin metabolism, and then critically discusses challenges and future perspectives. Through these, it is expected to be able to achieve possible solutions and insights and to develop an outstanding platform to be applied to the industry in future research.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"373-387"},"PeriodicalIF":9.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10753330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Ansah Herman, Ellen Ayepa, Wen-Xin Zhang, Zong-Nan Li, Xuan Zhu, Michael Ackah, Shuang-Shuang Yuan, Shuai You, Jun Wang
{"title":"Molecular modification and biotechnological applications of microbial aspartic proteases.","authors":"Richard Ansah Herman, Ellen Ayepa, Wen-Xin Zhang, Zong-Nan Li, Xuan Zhu, Michael Ackah, Shuang-Shuang Yuan, Shuai You, Jun Wang","doi":"10.1080/07388551.2023.2171850","DOIUrl":"10.1080/07388551.2023.2171850","url":null,"abstract":"<p><p>The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"388-413"},"PeriodicalIF":9.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10768901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial assisted multifaceted amelioration processes of heavy-metal remediation: a clean perspective toward sustainable and greener future.","authors":"Komal Agrawal, Tannu Ruhil, Vijai Kumar Gupta, Pradeep Verma","doi":"10.1080/07388551.2023.2170862","DOIUrl":"10.1080/07388551.2023.2170862","url":null,"abstract":"<p><p>Rapidly increasing heavy metal waste has adversely affected the environment and the Earth's health. The lack of appropriate remediation technologies has worsened the issue globally, especially in developing countries. Heavy-metals contaminants have severely impacted the environment and led to devastating conditions owing to their abundance and reactivity. As they are nondegradable, the potential risk increases even at a low concentration. However, heavy-metal remediation has increased with the up-gradation of technologies and integration of new approaches. Also, of all the treatment methodologies, microbial-assisted multifaceted approach for ameliorating heavy metals is a promising strategy for propagating the idea of a green and sustainable environment with minimal waste aggregation. Microbial remediation combined with different biotechniques could aid in unraveling new methods for eradicating heavy metals. Thus, the present review focuses on various microbial remediation approaches and their affecting factors, enabling recapitulation of the interplay between heavy-metals ions and microorganisms. Additionally, heavy-metals remediation mechanisms adapted by microorganisms, the role of genetically modified (GM) microorganisms, life cycle assessment (LCA), techno-economic assessment (TEA) limitations, and prospects of microbial-assisted amelioration of heavy-metals have been elaborated in the current review with focus toward \"<i>sustainable and greener future</i>.\"</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"429-447"},"PeriodicalIF":9.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9358560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Er Crystal Thew, Sewn Cen Lo, Ramakrishnan Nagasundara Ramanan, Beng Ti Tey, Nguyen Duc Huy, Ooi Chien Wei
{"title":"Enhancing plastic biodegradation process: strategies and opportunities.","authors":"Xue Er Crystal Thew, Sewn Cen Lo, Ramakrishnan Nagasundara Ramanan, Beng Ti Tey, Nguyen Duc Huy, Ooi Chien Wei","doi":"10.1080/07388551.2023.2170861","DOIUrl":"10.1080/07388551.2023.2170861","url":null,"abstract":"<p><p>Plastic biodegradation has emerged as a sustainable approach and green alternative in handling the ever-increasing accumulation of plastic wastes in the environment. The complete biodegradation of polyethylene terephthalate is one of the most recent breakthroughs in the field of plastic biodegradation. Despite the success, the effective and complete biodegradation of a wide variety of plastics is still far from the practical implementation, and an on-going effort has been mainly devoted to the exploration of novel microorganisms and enzymes for plastic biodegradation. However, alternative strategies which enhance the existing biodegradation process should not be neglected in the continuous advancement of this field. Thus, this review highlights various strategies which have shown to improve the biodegradation of plastics, which include the pretreatment of plastics using UV irradiation, thermal, or chemical treatments to increase the susceptibility of plastics toward microbial action. Alternative pretreatment strategies are also suggested and compared with the existing techniques. Besides, the effects of additives such as pro-oxidants, natural polymers, and surfactants on plastic biodegradation are discussed. In addition, considerations governing the biodegradation performance, such as the formulation of biodegradation medium, cell-free biocatalysis, and physico-chemical properties of plastics, are addressed. Lastly, the challenges and future prospects for the advancement of plastic biodegradation are also highlighted.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"477-494"},"PeriodicalIF":9.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10716827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}