Critical Reviews in Biotechnology最新文献

筛选
英文 中文
Bacterial genome reduction for optimal chassis of synthetic biology: a review. 减少细菌基因组以优化合成生物学底盘:综述。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-06-28 DOI: 10.1080/07388551.2023.2208285
Shuai Ma, Tianyuan Su, Xuemei Lu, Qingsheng Qi
{"title":"Bacterial genome reduction for optimal chassis of synthetic biology: a review.","authors":"Shuai Ma, Tianyuan Su, Xuemei Lu, Qingsheng Qi","doi":"10.1080/07388551.2023.2208285","DOIUrl":"10.1080/07388551.2023.2208285","url":null,"abstract":"<p><p>Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"660-673"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. omics 时代的植物病原体生物防治--特别关注内生杆菌。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-04-13 DOI: 10.1080/07388551.2023.2183379
Ayesha Ahmed, Pengfei He, Yueqiu He, Brajesh K Singh, Yixin Wu, Shahzad Munir, Pengbo He
{"title":"Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli.","authors":"Ayesha Ahmed, Pengfei He, Yueqiu He, Brajesh K Singh, Yixin Wu, Shahzad Munir, Pengbo He","doi":"10.1080/07388551.2023.2183379","DOIUrl":"10.1080/07388551.2023.2183379","url":null,"abstract":"<p><p>Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"562-580"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9294460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. 作为脂肪酸、类胡萝卜素和固醇的重要来源的蓟马:生物活性化合物的生物合成和现代生物技术。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-05-09 DOI: 10.1080/07388551.2023.2196373
Yingjie Song, Xuewei Yang, Shuangfei Li, Yanqing Luo, Jo-Shu Chang, Zhangli Hu
{"title":"Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology.","authors":"Yingjie Song, Xuewei Yang, Shuangfei Li, Yanqing Luo, Jo-Shu Chang, Zhangli Hu","doi":"10.1080/07388551.2023.2196373","DOIUrl":"10.1080/07388551.2023.2196373","url":null,"abstract":"<p><p>Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"618-640"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9434502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. D- 氨基酸生物合成的最新战略和研究进展。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-05-09 DOI: 10.1080/07388551.2023.2193861
Fenghua Wang, Hongbin Qi, Huimin Li, Xuanzhen Ma, Xin Gao, Chao Li, Fuping Lu, Shuhong Mao, Hui-Min Qin
{"title":"State-of-the-art strategies and research advances for the biosynthesis of D-amino acids.","authors":"Fenghua Wang, Hongbin Qi, Huimin Li, Xuanzhen Ma, Xin Gao, Chao Li, Fuping Lu, Shuhong Mao, Hui-Min Qin","doi":"10.1080/07388551.2023.2193861","DOIUrl":"10.1080/07388551.2023.2193861","url":null,"abstract":"<p><p>D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"495-513"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9438520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in Haematococcus pluvialis. 增强虾青素生物合成的分子方法;未来展望:血球藻转录因子工程。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-06-28 DOI: 10.1080/07388551.2023.2208284
Sadaf-Ilyas Kayani, Saeed-Ur -Rahman, Qian Shen, Yi Cui, Wei Liu, Xinjuan Hu, Feifei Zhu, Shuhao Huo
{"title":"Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in <i>Haematococcus pluvialis</i>.","authors":"Sadaf-Ilyas Kayani, Saeed-Ur -Rahman, Qian Shen, Yi Cui, Wei Liu, Xinjuan Hu, Feifei Zhu, Shuhao Huo","doi":"10.1080/07388551.2023.2208284","DOIUrl":"10.1080/07388551.2023.2208284","url":null,"abstract":"<p><p>Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. <i>Haematococcus pluvialis</i> is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in <i>H. pluvialis.</i> However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in <i>H. pluvialis</i> genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in <i>H. pluvialis</i>.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"514-529"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts. 酶杂化纳米花和酶@金属有机框架复合材料:迷人的杂化纳米生物催化剂。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-04-09 DOI: 10.1080/07388551.2023.2189548
Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui
{"title":"Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts.","authors":"Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui","doi":"10.1080/07388551.2023.2189548","DOIUrl":"10.1080/07388551.2023.2189548","url":null,"abstract":"<p><p>Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"674-697"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9619376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developed and emerging 1,4-butanediol commercial production strategies: forecasting the current status and future possibility. 已开发和新兴的 1,4-丁二醇商业生产战略:预测现状和未来可能性。
IF 9 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-06-07 DOI: 10.1080/07388551.2023.2176740
Pradeep Kumar, HyunA Park, Yong Yuk, Hayan Kim, Jihwan Jang, Raviteja Pagolu, SeoA Park, Chanseo Yeo, Kwon-Young Choi
{"title":"Developed and emerging 1,4-butanediol commercial production strategies: forecasting the current status and future possibility.","authors":"Pradeep Kumar, HyunA Park, Yong Yuk, Hayan Kim, Jihwan Jang, Raviteja Pagolu, SeoA Park, Chanseo Yeo, Kwon-Young Choi","doi":"10.1080/07388551.2023.2176740","DOIUrl":"10.1080/07388551.2023.2176740","url":null,"abstract":"<p><p>1,4-Butanediol (1,4-BDO) is a valuable industrial chemical that is primarily produced via several energy-intensive petrochemical processes based on fossil-based raw materials, leading to issues related to: non-renewability, environmental contamination, and high production costs. 1,4-BDO is used in many chemical reactions to develop a variety of useful, valuable products, such as: polyurethane, Spandex intermediates, and polyvinyl pyrrolidone (PVP), a water-soluble polymer with numerous personal care and pharmaceutical uses. In recent years, to satisfy the growing need for 1,4-BDO, there has been a major shift in focus to sustainable bioproduction via microorganisms using: recombinant strains, metabolic engineering, synthetic biology, enzyme engineering, bioinformatics, and artificial intelligence-guided algorithms. This article discusses the current status of the development of: various chemical and biological production techniques for 1,4-BDO, advances in biological pathways for 1,4-BDO biosynthesis, prospects for future production strategies, and the difficulties associated with environmentally friendly and bio-based commercial production strategies.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"530-546"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9591936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanobiosensors and their role in detection of adulterants and contaminants in food products. 纳米生物传感器及其在检测食品中掺假物质和污染物方面的作用。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-02-26 DOI: 10.1080/07388551.2023.2175196
Gurlovleen Kaur, Ranjeeta Bhari, Kuldeep Kumar
{"title":"Nanobiosensors and their role in detection of adulterants and contaminants in food products.","authors":"Gurlovleen Kaur, Ranjeeta Bhari, Kuldeep Kumar","doi":"10.1080/07388551.2023.2175196","DOIUrl":"10.1080/07388551.2023.2175196","url":null,"abstract":"<p><p>Nanotechnology is a multifaceted technical and scientific field undergoing a fast expansion. Nanoparticles, quantum dots, nanotubes, nanorods, nanowires, nanochips and many more are being increasingly used for fabrication of nanosensors and nanobiosensors to increase the sensitivity and selectivity of reactions. Food safety is an extremely important concern in food industries since it is directly associated with effect of food on human health. Here in our review, we have not only described the newest information regarding methods and use of nanomaterials for construction of nanosensors but also their detection range, limit of detection (LOD) and applications for food safety. Precise nanosensors having improved sensitivity and low limit of detection were discussed in brief. Review is primarily focused on nanosensors employed for detection of adulterants and contaminants in food products such as meat products, milk, fruit juices and water samples.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"547-561"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10785089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun wound dressings with antibacterial function: a critical review of plant extract and essential oil incorporation. 具有抗菌功能的电纺伤口敷料:对植物提取物和精油掺入的深入研究。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-05-08 DOI: 10.1080/07388551.2023.2193859
Cláudia Mouro, Isabel C Gouveia
{"title":"Electrospun wound dressings with antibacterial function: a critical review of plant extract and essential oil incorporation.","authors":"Cláudia Mouro, Isabel C Gouveia","doi":"10.1080/07388551.2023.2193859","DOIUrl":"10.1080/07388551.2023.2193859","url":null,"abstract":"<p><p>Among the many different types of wound dressings, nanofiber-based materials produced through electrospinning are claimed to be ideal because of their advantageous intrinsic properties and the feasibility of employing several strategies to load bioactive compounds into their structure. Bioactive compounds with antimicrobial properties have been incorporated into different wound dressings to promote healing as well as prevent and treat bacterial infections. Among these, natural products, such as medicinal plant extracts and essential oils (EOs), have proven particularly attractive thanks to their nontoxic nature, minor side effects, desirable bioactive properties, and favorable effects on the healing process. To this end, the present review provides an exhaustive and up-to-date revision of the most prominent medicinal plant extracts and EOs with antimicrobial properties that have been incorporated into nanofiber-based wound dressings. The most common methods used for incorporating bioactive compounds into electrospun nanofibers include: pre-electrospinning (blend, encapsulation, coaxial, and emulsion electrospinning), post-electrospinning (physical adsorption, chemical immobilization, and layer-by-layer assembly), and nanoparticle loading. Furthermore, a general overview of the benefits of EOs and medicinal plant extracts is presented, describing their intrinsic properties and biotechniques for their incorporation into wound dressings. Finally, the current challenges and safety issues that need to be adequately clarified and addressed are discussed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"641-659"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting dietary alkylresorcinols: a compile of their distribution, biosynthesis, extraction and functional properties. 剖析膳食中的烷基间苯二酚:其分布、生物合成、提取和功能特性汇编。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-06-01 Epub Date: 2023-05-08 DOI: 10.1080/07388551.2023.2193860
Rehan M El-Shabasy, Mohamed A Farag
{"title":"Dissecting dietary alkylresorcinols: a compile of their distribution, biosynthesis, extraction and functional properties.","authors":"Rehan M El-Shabasy, Mohamed A Farag","doi":"10.1080/07388551.2023.2193860","DOIUrl":"10.1080/07388551.2023.2193860","url":null,"abstract":"<p><p>Alkylresorcinols (ARs) are natural bioactive ingredients produced by: bacteria, fungi, sponges, and higher plants, possessing a lipophilic polyphenol structure with a myriad of biological properties. Focusing on the importance of ARs, several analogs can be extracted from different natural resources. Interestingly, the composition of ARs is usually reflective of their source, with structural differences to exist among ARs isolated from different natural sources. The identified compounds from marine are distinguished by sulfur atom and disulfide bond, while the alkyl chain of bacterial homologs are recognized for their saturated fatty acid chains. ARs occurrence in fungi is still poorly documented however most of the isolated fungal molecules are characterized by a sugar unit attached to their alkylated side chains. The biosynthetic pathway of ARs is postulated <i>via</i> a type III polyketide synthase in which the fatty-acyl chain is elongated and cyclized to generate ARs. The structure-activity relationship (SAR) has gained an increasing interest to mediate for ARs biological activities as discussed herein for the first time from their different resources. ARs extraction procedures showed much progress compared to classical methods compiling organic solvents with supercritical extraction appearing as a potential technique for producing highly purified food-grade of AR homologs. The current review also presents on the rapid qualitative and quantitative determination of ARs to increase accessibility for screening cereals as potential sources of these bioactives.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"581-617"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信