Critical Reviews in Biotechnology最新文献

筛选
英文 中文
Progress of silk fibroin biomaterial use in oral tissue regeneration engineering.
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-24 DOI: 10.1080/07388551.2025.2472621
Xiao-Qing Qian, Meng Zhang, Hai-Yan Wang
{"title":"Progress of silk fibroin biomaterial use in oral tissue regeneration engineering.","authors":"Xiao-Qing Qian, Meng Zhang, Hai-Yan Wang","doi":"10.1080/07388551.2025.2472621","DOIUrl":"https://doi.org/10.1080/07388551.2025.2472621","url":null,"abstract":"<p><p>The field of tissue engineering has introduced novel prospects for the regeneration of oral tissues, wherein stent materials assume a pivotal role and have garnered increasing attention. As a natural protein with good biocompatibility and adjustable biodegradability, an increasing number of studies focus on the uses of silk fibroin (SF) biomaterials for medical tissue regeneration engineering. Solid evidence has been found for using SF biomaterials in various oral tissue regeneration fields, from endodontics and periodontics to regenerating the maxillofacial bone. In order to provide researchers with a systematic understanding of the application of SF biomaterials to oral tissue regeneration, the present work reviews in detail the common forms of SF biomaterials for oral tissue regeneration as well as their preparation methods. In addition, the common additives used in the corresponding materials are introduced.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":8.1,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in biological synthesis of food additive succinate.
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-19 DOI: 10.1080/07388551.2025.2472636
Qiang Ding, Mengqi Ji, Buhan Yao, Kangliang Sheng, Yongzhong Wang
{"title":"Recent advances in biological synthesis of food additive succinate.","authors":"Qiang Ding, Mengqi Ji, Buhan Yao, Kangliang Sheng, Yongzhong Wang","doi":"10.1080/07388551.2025.2472636","DOIUrl":"https://doi.org/10.1080/07388551.2025.2472636","url":null,"abstract":"<p><p>Succinate, a crucial bio-based chemical building block, has already found extensive applications in fields such as food additives, pharmaceutical intermediates, and the chemical materials industry. To efficiently and economically synthesize succinate, substantial endeavors have been executed to optimize fermentation processes and downstream operations. Nonetheless, there is still a need to enhance cost-effectiveness and competitiveness while considering environmental concerns, particularly in light of the escalating demands and challenges posed by global warming. This article primarily focuses on the application of metabolic engineering strategies to strengthen succinate biosynthesis. These strategies encompass fermentation regulation, metabolic regulation, cellular regulation, and model guidance. By leveraging advanced synthetic biology techniques, this review highlights the potential for developing robust microbial cell factories and shaping the future directions for the integration of microbes in industrial applications.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-14"},"PeriodicalIF":8.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xylooligosaccharides mediated gut microbiome modulation: prebiotics to postbiotics.
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-17 DOI: 10.1080/07388551.2025.2460852
Vishal Kumar, Ashutosh Bahuguna, Subhash Kumar, Myunghee Kim
{"title":"Xylooligosaccharides mediated gut microbiome modulation: prebiotics to postbiotics.","authors":"Vishal Kumar, Ashutosh Bahuguna, Subhash Kumar, Myunghee Kim","doi":"10.1080/07388551.2025.2460852","DOIUrl":"https://doi.org/10.1080/07388551.2025.2460852","url":null,"abstract":"<p><p>An increasing trend toward harnessing nutraceuticals as food supplements rather than pharmaceuticals as curative and preventive agents against various ailments has been observed. Owing to their health benefits, prebiotics have received notable attention from the pharmaceutical and food industries. Among the different prebiotic oligosaccharides, xylooligosaccharides (XOS) exhibited a remarkable capacity to stimulate the growth of the gut microbiota and benefit individuals with metabolic abnormalities. Additionally, XOS can be produced from various renewable agricultural wastes, which supports their economic feasibility for use as prebiotics at the industrial level. This review explains gut microbiome modulation based on <i>in vivo</i>, <i>in vitro</i>, and clinical findings. Gut microbiome modulation leads to the production of postbiotics that stimulate various beneficial health effects. The current review entails the mechanisms of different health-promoting activities mediated by XOS, including immunomodulation and anticancer effects. Additionally, the concept of converting prebiotics to synbiotics using XOS has been established for nutraceutical applications. Synbiotics based on XOS and probiotics may be good alternatives to nutraceuticals for improving human health.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":8.1,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries.
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-16 DOI: 10.1080/07388551.2025.2473576
Sampurna Rai, Prashant Pokhrel, Pranaya Udash, Menjo Chemjong, Namita Bhattarai, Arthittaya Thuanthong, Sitthipong Nalinanon, Nilesh Nirmal
{"title":"Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries.","authors":"Sampurna Rai, Prashant Pokhrel, Pranaya Udash, Menjo Chemjong, Namita Bhattarai, Arthittaya Thuanthong, Sitthipong Nalinanon, Nilesh Nirmal","doi":"10.1080/07388551.2025.2473576","DOIUrl":"https://doi.org/10.1080/07388551.2025.2473576","url":null,"abstract":"<p><p>A shellfish processing plant generates only 30-40% of edible meat, while 70-60% of portions are considered inedible or by-products. This large amount of byproduct or shellfish processing waste contains 20-40% chitin, that can be extracted using chemical or greener alternative extraction technologies. Chitin and its derivative (chitosan) are natural polysaccharides with nontoxicity, biocompatible, and biodegradable properties. Due to their versatile physicochemical, mechanical, and various bioactivities, these compounds find applications in various industries, including: biomedical, dental, cosmetics, food, textiles, agriculture, and biotechnology. In the agricultural sector, these compounds have been reported to promote: plant growth, plant defense system, slow release of nutrients in fertilizer, plant nutrition, and remediate soil conditions, etc. Whereas, biotechnology applications indicated: enhanced enzyme stability and efficacy, water purification and remediation, application in fuel cells and supercapacitors for energy conversion, acting as a catalyst in chemical synthesis, etc. This review provides a comprehensive discussion on the utilization of these biopolymers in agriculture (fertilizer, seed coating, soil treatment, and bioremediation) and biotechnology (enzyme immobilization, energy conversion, wastewater treatment, and chemical synthesis). Additionally, various extraction techniques including conventional and non-thermal techniques have been reported. Lastly, concluding remarks and future direction have been provided.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":8.1,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143639449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. 废水中的病毒和细菌、学术界和实地部署之间的监控和生物传感器。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-01 Epub Date: 2024-07-07 DOI: 10.1080/07388551.2024.2354709
Rajendra Singh, Jaewon Ryu, Woo Hyoung Lee, Joo-Hyon Kang, Sanghwa Park, Keugtae Kim
{"title":"Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment.","authors":"Rajendra Singh, Jaewon Ryu, Woo Hyoung Lee, Joo-Hyon Kang, Sanghwa Park, Keugtae Kim","doi":"10.1080/07388551.2024.2354709","DOIUrl":"10.1080/07388551.2024.2354709","url":null,"abstract":"<p><p>Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"413-433"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chassis engineering for high light tolerance in microalgae and cyanobacteria. 微藻类和蓝藻耐强光的底盘工程。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-01 Epub Date: 2024-07-10 DOI: 10.1080/07388551.2024.2357368
Biyun Dou, Yang Li, Fangzhong Wang, Lei Chen, Weiwen Zhang
{"title":"Chassis engineering for high light tolerance in microalgae and cyanobacteria.","authors":"Biyun Dou, Yang Li, Fangzhong Wang, Lei Chen, Weiwen Zhang","doi":"10.1080/07388551.2024.2357368","DOIUrl":"10.1080/07388551.2024.2357368","url":null,"abstract":"<p><p>Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"257-275"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments. 第二代生物炼油厂中木质纤维素材料的增值:生产真菌生物颜料的机会。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-01 Epub Date: 2024-05-30 DOI: 10.1080/07388551.2024.2349581
Gabriel L Arruda, Maria Teresa F R Raymundo, Mónica M Cruz-Santos, Vinícius P Shibukawa, Fanny M Jofre, Carina A Prado, Silvio S da Silva, Solange I Mussatto, Júlio C Santos
{"title":"Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments.","authors":"Gabriel L Arruda, Maria Teresa F R Raymundo, Mónica M Cruz-Santos, Vinícius P Shibukawa, Fanny M Jofre, Carina A Prado, Silvio S da Silva, Solange I Mussatto, Júlio C Santos","doi":"10.1080/07388551.2024.2349581","DOIUrl":"10.1080/07388551.2024.2349581","url":null,"abstract":"<p><p>Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, β-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"393-412"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications. 用于低热量 D-纤维素合成的 D-allulose 3-epimerase:微生物生产、表征和应用。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-01 Epub Date: 2024-07-07 DOI: 10.1080/07388551.2024.2368517
Xiaofang Xie, Caiming Li, Xiaofeng Ban, Hongshun Yang, Zhaofeng Li
{"title":"D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications.","authors":"Xiaofang Xie, Caiming Li, Xiaofeng Ban, Hongshun Yang, Zhaofeng Li","doi":"10.1080/07388551.2024.2368517","DOIUrl":"10.1080/07388551.2024.2368517","url":null,"abstract":"<p><p>D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"353-372"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation. 微生物燃料电池中的电活性生物膜群落,用于协同处理废水和生物发电。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-01 Epub Date: 2024-07-15 DOI: 10.1080/07388551.2024.2372070
Kumari Uma Mahto, Surajit Das
{"title":"Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation.","authors":"Kumari Uma Mahto, Surajit Das","doi":"10.1080/07388551.2024.2372070","DOIUrl":"10.1080/07388551.2024.2372070","url":null,"abstract":"<p><p>Increasing industrialization and urbanization have contributed to a significant rise in wastewater discharge and exerted extensive pressure on the existing natural energy resources. Microbial fuel cell (MFC) is a sustainable technology that utilizes wastewater for electricity generation. MFC comprises a bioelectrochemical system employing electroactive biofilms of several aerobic and anaerobic bacteria, such as <i>Geobacter sulfurreducens, Shewanella oneidensis, Pseudomonas aeruginosa,</i> and <i>Ochrobacterum pseudiintermedium.</i> Since the electroactive biofilms constitute a vital part of the MFC, it is crucial to understand the biofilm-mediated pollutant metabolism and electron transfer mechanisms. Engineering electroactive biofilm communities for improved biofilm formation and extracellular polymeric substances (EPS) secretion can positively impact the bioelectrochemical system and improve fuel cell performance. This review article summarizes the role of electroactive bacterial communities in MFC for wastewater treatment and bioelectricity generation. A significant focus has been laid on understanding the composition, structure, and function of electroactive biofilms in MFC. Various electron transport mechanisms, including direct electron transfer (DET), indirect electron transfer (IET), and long-distance electron transfer (LDET), have been discussed. A detailed summary of the optimization of process parameters and genetic engineering strategies for improving the performance of MFC has been provided. Lastly, the applications of MFC for wastewater treatment, bioelectricity generation, and biosensor development have been reviewed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"434-453"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogenesis related-1 proteins in plant defense: regulation and functional diversity. 植物防御中的致病相关-1 蛋白:调控和功能多样性。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-03-01 Epub Date: 2024-05-08 DOI: 10.1080/07388551.2024.2344583
Talha Javed, Wenzhi Wang, Benpeng Yang, Linbo Shen, Tingting Sun, San-Ji Gao, Shuzhen Zhang
{"title":"Pathogenesis related-1 proteins in plant defense: regulation and functional diversity.","authors":"Talha Javed, Wenzhi Wang, Benpeng Yang, Linbo Shen, Tingting Sun, San-Ji Gao, Shuzhen Zhang","doi":"10.1080/07388551.2024.2344583","DOIUrl":"10.1080/07388551.2024.2344583","url":null,"abstract":"<p><p>Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"305-313"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信