Rohan R Bhujle, Nidhi Nayak, N A Nanje Gowda, Ravi Pandiselvam, Chikkaballapura Krishnappa Sunil
{"title":"A comprehensive review on influence of millet processing on carbohydrate-digesting enzyme inhibitors and implications for diabetes management.","authors":"Rohan R Bhujle, Nidhi Nayak, N A Nanje Gowda, Ravi Pandiselvam, Chikkaballapura Krishnappa Sunil","doi":"10.1080/07388551.2024.2423153","DOIUrl":"10.1080/07388551.2024.2423153","url":null,"abstract":"<p><p>Millets, often overlooked as food crops, have regained potential as promising stable food sources of bioactive compounds to regulate blood sugar levels in the diabetic populace. This comprehensive review delves into various millet varieties, processing methods, and extraction techniques aimed at isolating bioactive compounds. The review elucidates the inhibitory effects of millet-derived bioactive compounds on key enzymes involved in carbohydrate metabolism, such as α-amylase and α-glucosidase. It further explores the relationship between the antibacterial activity of phenols, flavonoids, and anthocyanins in millets and their role in amylase inhibition. In particular, phenols, flavonoids, and proteins found in millets play pivotal roles in inhibiting enzymes responsible for glucose digestion and absorption. However, processing methods can either enhance or reduce the bioactive compounds, thereby influencing enzyme inhibition capacity. Studies underscore the presence of phenolic compounds with notable inhibitory activity in: foxtail, finger, barnyard, and pearl millet varieties. Furthermore, extraction techniques, such as Soxhlet and ultrasonic-assisted extraction, emerge as efficient methods for isolating bioactive compounds, thus enhancing their therapeutic efficacy. This review highlights the challenges in preserving the inhibitory activity of millets during processing and optimizing processing methods to ensure better retention of bioactive compounds. It also emphasizes the utilization of millet as a natural dietary supplement or functional food to manage diabetes and promote overall well-being.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"743-765"},"PeriodicalIF":8.1,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haojie Jin, Wanzhao Ge, Mengzhe Li, Yan Wang, Yanjing Jiang, Jiaqi Zhang, Yike Jing, Yigang Tong, Yujie Fu
{"title":"Advances in the development of phage-mediated cyanobacterial cell lysis.","authors":"Haojie Jin, Wanzhao Ge, Mengzhe Li, Yan Wang, Yanjing Jiang, Jiaqi Zhang, Yike Jing, Yigang Tong, Yujie Fu","doi":"10.1080/07388551.2024.2399530","DOIUrl":"10.1080/07388551.2024.2399530","url":null,"abstract":"<p><p>Cyanobacteria, the only oxygenic photoautotrophs among prokaryotes, are developing as both carbon building blocks and energetic self-supported chassis for the generation of various bioproducts. However, one of the challenges to optimize it as a more sustainable platform is how to release intracellular bioproducts for an easier downstream biorefinery process. To date, the major method used for cyanobacterial cell lysis is based on mechanical force, which is energy-intensive and economically unsustainable. Phage-mediated bacterial cell lysis is species-specific and highly efficient and can be conducted under mild conditions; therefore, it has been intensively studied as a bacterial cell lysis weapon. In contrast to heterotrophic bacteria, biological cell lysis studies in cyanobacteria are lagging behind. In this study, we reviewed cyanobacterial cell envelope features that could affect cell strength and elicited a thorough presentation of the necessary phage lysin components for efficient cell lysis. We then summarized all bioengineering manipulated pipelines for lysin component optimization and further revealed the challenges for each intent-oriented application in cyanobacterial cell lysis. In addition to applied biotechnology usage, the significance of phage-mediated cyanobacterial cell lysis could also advance sophisticated biochemical studies and promote biocontrol of toxic cyanobacteria blooms.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1002-1018"},"PeriodicalIF":8.1,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overview of resveratrol properties, applications, and advances in microbial precision fermentation.","authors":"Carlos E Costa, Aloia Romaní, Lucília Domingues","doi":"10.1080/07388551.2024.2424362","DOIUrl":"10.1080/07388551.2024.2424362","url":null,"abstract":"<p><p>Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While <i>Saccharomyces cerevisiae</i> has been the most used host, non-conventional yeasts like <i>Yarrowia lipolytica</i> and bacteria like <i>Escherichia coli</i> have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"788-804"},"PeriodicalIF":8.1,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Astaxanthin biosynthesis for functional food development and space missions.","authors":"Xiulan Xie, Moyu Zhong, Xinxin Huang, Xinrui Yuan, Nasser Mahna, Cassamo Ussemane Mussagy, Maozhi Ren","doi":"10.1080/07388551.2024.2410364","DOIUrl":"10.1080/07388551.2024.2410364","url":null,"abstract":"<p><p>Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga <i>Haematococcuspluvialis</i>, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"923-937"},"PeriodicalIF":8.1,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mayssa Hachem, Abdelmoneim H Ali, Mariam Hejou, Aliyaa Almansoori, Shamma Abulhassan, Fatimah Hussein, Rana Khalifa, Rayan Khalifa, Peter R Corridon
{"title":"Sustainable and biotechnological production of docosahexaenoic acid from marine protists and slaughterhouse waste.","authors":"Mayssa Hachem, Abdelmoneim H Ali, Mariam Hejou, Aliyaa Almansoori, Shamma Abulhassan, Fatimah Hussein, Rana Khalifa, Rayan Khalifa, Peter R Corridon","doi":"10.1080/07388551.2025.2499895","DOIUrl":"https://doi.org/10.1080/07388551.2025.2499895","url":null,"abstract":"<p><p>Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid, abundant in the brain and eyes. DHA is crucial for maintaining the structural integrity and physiological functions of these vital organs. Within the brain, DHA is concentrated in the gray matter, synaptic membranes, and hippocampus. Likewise, in the eyes, substantial quantities can be found in the retina, with lower levels in the cornea and lens. Previous studies have outlined the potential for culturing marine heterotrophic protists in ways that provide cost-effective and sustainable DHA biosynthesis. Similarly, our previous work on repurposing slaughterhouse waste has highlighted this underutilized source of brain and ocular tissue, which can support the extraction of valuable nutrients such as DHA. In this review, we will examine the current state of the art related to DHA production from these two sources, explore potential applications, and outline the possible benefits that may be generated from our approaches, with an emphasis on ocular diseases.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":8.1,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144141696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuyong Hou, Wenqiao Wang, Zhiyong Liu, Longjiang Yu, Lei Zhao
{"title":"Boosting microalgae-based carbon sequestration with the artificial CO<sub>2</sub> concentration system.","authors":"Yuyong Hou, Wenqiao Wang, Zhiyong Liu, Longjiang Yu, Lei Zhao","doi":"10.1080/07388551.2025.2498464","DOIUrl":"https://doi.org/10.1080/07388551.2025.2498464","url":null,"abstract":"<p><p>Global warming caused by CO<sub>2</sub> emissions has been considered as one of the major challenges of this century. In an endeavor to control and reduce CO<sub>2</sub> emissions, a series of <i>C</i>arbon dioxide <i>C</i>apture, <i>U</i>tilization, and <i>S</i>torage (CCUS) technologies have been developed specifically for the sequestration of CO<sub>2</sub> from atmospheric air. Microalgae, as versatile and universal photosynthetic microorganisms, represent a promising avenue for biological CO<sub>2</sub> sequestration. Nevertheless, further advancements are necessary to optimize microalgae-based carbon sequestration technology in terms of light reaction and dark reaction. This review discusses the current status of microalgae-based artificial CO<sub>2</sub> sequestration technique, with a particular focus on the selection of CO<sub>2</sub>-resistant species, optimization of cultivation for CO<sub>2</sub> sequestration, design of carbon concentration reactor, and the potential of synthetic biology to enhance CO<sub>2</sub> solubility and biofixation efficiency. Furthermore, a discussion of Life cycle assessment and Techno-economic analysis regarding microalgae-based carbon capture was performed. The aim of this comprehensive review is to stimulate further research into microalgae-based CO<sub>2</sub> sequestration, addressing challenges and opportunities for future development.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":8.1,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potato microtuberization: its regulation and applications.","authors":"Vishal, Surbhi Mali, Madhushree Dutta, Anuj Choudhary, Gaurav Zinta","doi":"10.1080/07388551.2025.2490957","DOIUrl":"https://doi.org/10.1080/07388551.2025.2490957","url":null,"abstract":"<p><p>Potato (<i>Solanum tuberosum</i> L.) is a globally consumed staple food crop grown in temperate regions. The underground storage organs (tubers) are a rich source of carbohydrates, proteins, vitamins, and minerals, contributing to food and nutritional security. Tuberization, the process by which underground stems (stolons) develop into tubers, is intricately regulated by genetic, epigenetic, and environmental factors. Studying the developmental transition from stolon to tuber in soil-based systems is challenging due to the limited visibility of below-ground stages. Microtuberization is the formation of small tubers under controlled, soil-less, and in vitro conditions, offering an effective alternative for precise monitoring of tuber development stages. Microtubers are valuable as disease-free seed propagules and essential for germplasm conservation, supporting the preservation and propagation of genetic resources. Microtuberization is influenced by both internal factors, viz., genotype and explant, and external factors, viz., photoperiod, temperature, light, plant growth regulators, sucrose, and synthetic molecules. These factors collectively regulate the transition from stolon to tuber. Microtubers exhibit strong similarities to field-grown tubers, making them a reliable model to study the environmental and molecular mechanisms of tuberization. This review examines the key factors driving microtuberization and explores potential molecular regulators involved in stolon-to-tuber transition. Furthermore, the applications of microtuberization are highlighted, including disease-free seed production, mass multiplication, germplasm evaluation and conservation, molecular farming, genetic engineering, and stress adaptation research. Additionally, microtubers serve as an experimental tool for unraveling the molecular intricacies of tuberization, paving the way for advancements in potato research and global food security strategies.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-24"},"PeriodicalIF":8.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chinese cordyceps products, geographic traceability and authenticity assessment: current status, challenges, and future directions.","authors":"Guoliang Meng, Fen Wang, Caihong Dong","doi":"10.1080/07388551.2025.2495280","DOIUrl":"https://doi.org/10.1080/07388551.2025.2495280","url":null,"abstract":"<p><p>Chinese cordyceps, a medicinal fungus and nutritional supplement native to the Tibetan Plateau, is highly celebrated for its potential health benefits and significant economic value. The quality of wild Chinese cordyceps varies across different production regions, resulting in considerable price differences. While the successful artificial cultivation of Chinese cordyceps marks a major breakthrough, it also introduces the challenge of distinguishing wild products from cultivated ones on the market. The industry faces critical issues arising from widespread fraudulent activities, such as geographic mislabeling, the substitution of wild cordyceps with cultivated ones, and counterfeiting. This review provides a comprehensive overview of the Chinese cordyceps products available on the market, including both wild and cultivated in dried and fresh forms, as well as fermentation products. It details fraudulent practices like mislabeling, substitution, adulteration, and artificial enhancement, and outlines methodologies for tracing the geographic origins of wild Chinese cordyceps, differentiating it from substitutes, and assessing authenticity. Although various methods have been developed, there remains a significant gap in terms of accessibility and practical implementation. Future efforts should prioritize extensive sampling, the creation of a comprehensive database of chemical fingerprints for Chinese cordyceps and related products, and the establishment of standardized workflows. By integrating this database with artificial intelligence and hyperspectral imaging technologies, it would be possible to develop rapid, nondestructive methods for geographic tracing and authenticity verification of Chinese cordyceps.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":8.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Bacillus</i> lipopeptides as versatile antimicrobial weapons: looking toward antiviral activity.","authors":"Henrique Ataide Isaia, Naiara Jacinta Clerici, Adriano Brandelli","doi":"10.1080/07388551.2025.2499152","DOIUrl":"https://doi.org/10.1080/07388551.2025.2499152","url":null,"abstract":"<p><p>Viral outbreaks are a topic of worldwide concern, resulting in a significant impact in health systems, a large number of deaths, and huge economical losses. The damage caused by Covid-19 has further highlighted the importance of prospecting for new molecules that can be applied in the prevention and treatment of viral infections. Many studies describe the remarkable antimicrobial activity of lipopeptides produced by <i>Bacillus</i> spp., especially against fungi and bacteria. However, research regarding the antagonistic effects on viruses is less frequent. Despite that, the antiviral activity of lipopeptides produced by <i>Bacillus</i> spp. has been demonstrated, indicating that these molecules could be potential candidates to control viral diseases. In this article, a compilation of reports with consistent data regarding the antiviral effect of <i>Bacillus</i> lipopeptides and the mechanisms involved in this process are presented. Moreover, the immunomodulatory role and toxicity profile of these molecules are discussed. <i>Bacillus</i> lipopeptides may exert an indirect antiviral effect, since they are able to positively induce humoral and cell-mediated immune responses. Moreover, their antiviral effect was observed <i>in vitro</i> and <i>in vivo</i> at nontoxic concentrations, offering a safe perspective for possible clinical application of these molecules. Finally, the challenges related to optimization and increasing production yield are addressed. This is the first critical review dedicated exclusively to antiviral activity of <i>Bacillus</i> lipopeptides.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":8.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biogenesis mechanisms, regulatory strategies, and applications of bacterial extracellular vesicles.","authors":"Chao Huang, Wenyan Cao, Shenghu Zhou, Yu Deng","doi":"10.1080/07388551.2025.2496300","DOIUrl":"https://doi.org/10.1080/07388551.2025.2496300","url":null,"abstract":"<p><p>Bacterial extracellular vesicles (EVs) are produced by both Gram-negative and Gram-positive bacteria. These EVs are composed of lipid bilayers and various components derived from parent bacteria, including proteins, lipids, and nucleic acids. Previous studies have indicated the significant role of bacterial EVs in interactions between bacteria and between bacteria and hosts. Moreover, bacterial EVs are emerging as promising delivery vectors capable of transporting drug molecules over long distances to tissues. Therefore, understanding the biogenesis of bacterial EVs and how to regulate their production holds great importance for expanding their applications. In this review, we provide an overview of bacterial EVs, especially focusing on the distinct mechanisms of EVs biogenesis and the regulation of EVs production in both Gram-negative and Gram-positive bacteria. Additionally, we discuss various methods for cargos loading into bacteria EVs, as well as their diverse applications in vaccines, cancer therapy, and drug delivery. We anticipate that this review will advance the field of bacterial EVs, contributing to both the enhancement of existing applications and the emergence of novel applications.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":8.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}